The current dogma is that obesity-associated hepatic inflammation is due to increased Kupffer cell (KC) activation. However, recruited hepatic macrophages (RHMs) were recently shown to represent a sizable liver macrophage population in the context of obesity. Therefore, we assessed whether KCs and RHMs, or both, represent the major liver inflammatory cell type in obesity. We used a combination of in vivo macrophage tracking methodologies and adoptive transfer techniques in which KCs and RHMs are differentially labeled with fluorescent markers. With these approaches, the inflammatory phenotype of these distinct macrophage populations was determined under lean and obese conditions. In vivo macrophage tracking revealed an approximately sixfold higher number of RHMs in obese mice than in lean mice, whereas the number of KCs was comparable. In addition, RHMs comprised smaller size and immature, monocyte-derived cells compared with KCs. Furthermore, RHMs from obese mice were more inflamed and expressed higher levels of tumor necrosis factor-α and interleukin-6 than RHMs from lean mice. A comparison of the MCP-1/C-C chemokine receptor type 2 (CCR2) chemokine system between the two cell types showed that the ligand (MCP-1) is more highly expressed in KCs than in RHMs, whereas CCR2 expression is approximately fivefold greater in RHMs. We conclude that KCs can participate in obesity-induced inflammation by causing the recruitment of RHMs, which are distinct from KCs and are not precursors to KCs. These RHMs then enhance the severity of obesity-induced inflammation and hepatic insulin resistance.
MicroRNAs have emerged as important regulators of glucose and lipid metabolism in several tissues; however, their role in skeletal muscle remains poorly characterized. We determined the effects of the miR-29 family on glucose metabolism, lipid metabolism, and insulin responsiveness in skeletal muscle. We provide evidence that miR-29a and miR-29c are increased in skeletal muscle from patients with type 2 diabetes and are decreased following endurance training in healthy young men and in rats. In primary human skeletal muscle cells, inhibition and overexpression strategies demonstrate that miR-29a and miR-29c regulate glucose uptake and insulin-stimulated glucose metabolism. We identified that miR-29 overexpression attenuates insulin signaling and expression of insulin receptor substrate 1 and phosphoinositide 3-kinase. Moreover, miR-29 overexpression reduces hexokinase 2 expression and activity. Conversely, overexpression of miR-29 by electroporation of mouse tibialis anterior muscle decreased glucose uptake and glycogen content in vivo, concomitant with decreased abundance of GLUT4. We also provide evidence that fatty acid oxidation is negatively regulated by miR-29 overexpression, potentially through the regulation of peroxisome proliferator-activated receptor γ coactivator-1α expression. Collectively, we reveal that miR-29 acts as an important regulator of insulin-stimulated glucose metabolism and lipid oxidation, with relevance to human physiology and type 2 diabetes.
Type 2 diabetes (T2D) is strongly linked to obesity and an adipose tissue unresponsive to insulin. The insulin resistance is due to defective insulin signaling, but details remain largely unknown. We examined insulin signaling in adipocytes from T2D patients, and contrary to findings in animal studies, we observed attenuation of insulin activation of mammalian target of rapamycin (mTOR) in complex with raptor (mTORC1). As a consequence, mTORC1 downstream effects were also affected in T2D: feedback signaling by insulin to signal-mediator insulin receptor substrate-1 (IRS1) was attenuated, mitochondria were impaired and autophagy was strongly upregulated. There was concomitant autophagic destruction of mitochondria and lipofuscin particles, and a dependence on autophagy for ATP production. Conversely, mitochondrial dysfunction attenuated insulin activation of mTORC1, enhanced autophagy and attenuated feedback to IRS1. The overactive autophagy was associated with large numbers of cytosolic lipid droplets, a subset with colocalization of perlipin and the autophagy protein LC3/atg8, which can contribute to excessive fatty acid release. Patients with diagnoses of T2D and overweight were consecutively recruited from elective surgery, whereas controls did not have T2D. Results were validated in a cohort of patients without diabetes who exhibited a wide range of insulin sensitivities. Because mitochondrial dysfunction, inflammation, endoplasmic-reticulum stress and hypoxia all inactivate mTORC1, our results may suggest a unifying mechanism for the pathogenesis of insulin resistance in T2D, although the underlying causes might differ. the dephosphorylation by phosphotyrosine protein phosphatases (13).TOR coordinates control of cell growth and metabolism in accordance with nutrient availability in unicellular organisms. During evolution of multicellular organisms this control was seized by insulin and other growth factors. However, the ancient ability of TOR to sense nutrient levels in cells independently of insulin is retained in multicellular organisms, including man, giving TOR a key role in cellular control of metabolism and cell growth, as well as tolerance to starvation through control of autophagy. In mammalian cells mTOR, in complex with the protein raptor (mTORC1), is activated by insulin and the insulin receptor substrate-1 (IRS1) via either or both of the two signaling branches of insulin that lead to activation of protein kinase B/Akt or the Map-kinase ERK1/2, respectively. By responding to amino acid and energy levels in the cell, mTORC1 thus integrates insulin signaling with nutrient availability to control cellular processes such as cell growth, protein synthesis, mitochondrial function and autophagy ( Figure 1A), reviewed in (14). In several studies, in particular on animals after high-fat feeding regimens, insulin resistance has been coupled with hyperactive mTORC1 (reviewed in [6]). However, because mTORC1 mediates the positive feedback signal to phosphorylation of IRS1 at serine 307, we wanted to further...
OBJECTIVEMatricellular Secreted Protein, Acidic and Rich in Cysteine (SPARC), originally discovered in bone as osteonectin, is a mediator of collagen deposition and promotes fibrosis. Adipose tissue collagen has recently been found to be linked with metabolic dysregulation. Therefore, we tested the hypothesis that SPARC in human adipose tissue is influenced by glucose metabolism and adipokines.RESEARCH DESIGN AND METHODSSerum and adipose tissue biopsies were obtained from morbidly obese nondiabetic subjects undergoing bariatric surgery and lean control subjects for analysis of metabolic markers, SPARC, and various cytokines (RT-PCR). Additionally, 24 obese subjects underwent a very-low-calorie diet of 1,883 kJ (450 kcal)/day for 16 weeks and serial subcutaneous-abdominal-adipose tissue (SCAT) biopsies (weight loss: 28 ± 3.7 kg). Another six lean subjects underwent fast-food–based hyperalimentation for 4 weeks (weight gain: 7.2 ± 1.6 kg). Finally, visceral adipose tissue explants were cultured with recombinant leptin, insulin, and glucose, and SPARC mRNA and protein expression determined by Western blot analyses.RESULTSSPARC expression in human adipose tissue correlated with fat mass and was higher in SCAT. Weight loss induced by very-low-calorie diet lowered SPARC expression by 33% and increased by 30% in adipose tissue of subjects gaining weight after a fast-food diet. SPARC expression was correlated with leptin independent of fat mass and correlated with homeostasis model assessment–insulin resistance. In vitro experiments showed that leptin and insulin potently increased SPARC production dose dependently in visceral adipose tissue explants, while glucose decreased SPARC protein.CONCLUSIONSOur data suggest that SPARC expression is predominant in subcutaneous fat and its expression and secretion in adipose tissue are influenced by fat mass, leptin, insulin, and glucose. The profibrotic effects of SPARC may contribute to metabolic dysregulation in obesity.
role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am J Physiol Endocrinol Metab 305: E1359 -E1366, 2013. First published October 8, 2013 doi:10.1152/ajpendo.00236.2013.-Low-grade inflammation associated with type 2 diabetes (T2DM) is postulated to exacerbate insulin resistance. We report that serum levels, as well as IL-13 secreted from cultured skeletal muscle, are reduced in T2DM vs. normal glucosetolerant (NGT) subjects. IL-13 exposure increases skeletal muscle glucose uptake, oxidation, and glycogen synthesis via an Aktdependent mechanism. Expression of microRNA let-7a and let-7d, which are direct translational repressors of the IL-13 gene, was increased in skeletal muscle from T2DM patients. Overexpression of let-7a and let-7d in cultured myotubes reduced IL-13 secretion. Furthermore, basal glycogen synthesis was reduced in cultured myotubes exposed to an IL-13-neutralizing antibody. Thus, IL-13 is synthesized and released by skeletal muscle through a mechanism involving let-7, and this effect is attenuated in skeletal muscle from insulin-resistant T2DM patients. In conclusion, IL-13 plays an autocrine role in skeletal muscle to increase glucose uptake and metabolism, suggesting a role in glucose homeostasis in metabolic disease.cytokines; diabetes; glucose metabolism; lipid metabolism; gene expression THE ROLE OF SKELETAL MUSCLE-DERIVED FACTORS or "myokines" as signaling molecules and the link to metabolic homeostasis are not completely described. The most extensively studied myokines include interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1, which exert biological effects on glucose and lipid metabolism via autocrine, paracrine, and endocrine mechanisms (11,34). However, the role of IL-13 in the development of insulin resistance and type 2 diabetes mellitus (T2DM) is unclear.IL-13 is secreted by activated Th2 cells and classified as an anti-inflammatory cytokine due to its ability to suppress the secretion of several macrophage and monocyte-derived inflammatory cytokines (6, 7). Hence, IL-13 counteracts several cytokines linked to the development of insulin resistance in T2DM (27,45). IL-13 is a major mediator of airway hyperresponsiveness and mucus hypersecretion, two fundamental responses in the clinical manifestation of asthma (20). IL-13-deficient mice display an impaired antigen-specific immunoglobulin G response but are otherwise viable with no reported disturbances in appearance or behavior (29). Thus, IL-13 displays disparate biological functions, ultimately promoting either anti-inflammatory or pathological responses, the latter primarily in lung. Of metabolic relevance is that IL-13 is required for alternative activation towards the anti-inflammatory M2 macrophage phenotype in adipose tissue, resulting in enhanced insulin sensitivity in mice fed a high-fat diet (22). Recent evidence implicates a role for IL-13 in controlling hepatic glucose production (41).There is a growing appreciation for the role of microRNAs (mi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.