Habitual footwear use has been reported to influence foot structure with an acute exposure being shown to alter foot position and mechanics. The foot is highly specialised thus these changes in structure/position could influence functionality. This review aims to investigate the effect of footwear on gait, specifically focussing on studies that have assessed kinematics, kinetics and muscle activity between walking barefoot and in common footwear. In line with PRISMA and published guidelines, a literature search was completed across six databases comprising Medline, EMBASE, Scopus, AMED, Cochrane Library and Web of Science. Fifteen of 466 articles met the predetermined inclusion criteria and were included in the review. All articles were assessed for methodological quality using a modified assessment tool based on the STROBE statement for reporting observational studies and the CASP appraisal tool. Walking barefoot enables increased forefoot spreading under load and habitual barefoot walkers have anatomically wider feet. Spatial-temporal differences including, reduced step/stride length and increased cadence, are observed when barefoot. Flatter foot placement, increased knee flexion and a reduced peak vertical ground reaction force at initial contact are also reported. Habitual barefoot walkers exhibit lower peak plantar pressures and pressure impulses, whereas peak plantar pressures are increased in the habitually shod wearer walking barefoot. Footwear particularly affects the kinematics and kinetics of gait acutely and chronically. Little research has been completed in older age populations (50+ years) and thus further research is required to better understand the effect of footwear on walking across the lifespan.
BackgroundGiven that physical activity (PA) has a positive impact on COPD symptoms and prognosis, this study examined the factors that both encourage and limit participation in PA for individuals with COPD in a primary care setting from the perspective of social cognitive theory.MethodsA purposive sample of 26 individuals with a range of COPD severity (age range: 50–89 years; males =15) were recruited from primary care to participate in one of four focus groups. Thematic analysis was undertaken to identify key concepts related to their self-efficacy beliefs.ResultsSeveral barriers and enablers closely related to self-efficacy beliefs and symptom severity were identified. The main barriers were health related (fatigue, mobility problems, breathing issues caused by the weather), psychological (embarrassment, fear, frustration/disappointment), attitudinal (feeling in control of their condition, PA perception, older age perception), and motivational. The main enabling factors were related to motivation (autonomous or controlled), attitudes, self-regulation, and performance accomplishments.Clinical implicationsWhen designing interventions for individuals with COPD, it is important to understand the patient-specific social cognitive influences on PA participation. This information can then inform individually tailored management planning.
BackgroundSelf-management (SM) support for patients with chronic obstructive pulmonary disease (COPD) is variable in its coverage, content, method and timing of delivery. There is insufficient evidence for which SM interventions are the most effective and cost-effective.ObjectivesTo undertake (1) a systematic review of the evidence for the effectiveness of SM interventions commencing within 6 weeks of hospital discharge for an exacerbation for COPD (review 1); (2) a systematic review of the qualitative evidence about patient satisfaction, acceptance and barriers to SM interventions (review 2); (3) a systematic review of the cost-effectiveness of SM support interventions within 6 weeks of hospital discharge for an exacerbation of COPD (review 3); (4) a cost-effectiveness analysis and economic model of post-exacerbation SM support compared with usual care (UC) (economic model); and (5) a wider systematic review of the evidence of the effectiveness of SM support, including interventions (such as pulmonary rehabilitation) in which there are significant components of SM, to identify which components are the most important in reducing exacerbations, hospital admissions/readmissions and improving quality of life (review 4).MethodsThe following electronic databases were searched from inception to May 2012: MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), and Science Citation Index [Institute of Scientific Information (ISI)]. Subject-specific databases were also searched: PEDro physiotherapy evidence database, PsycINFO and the Cochrane Airways Group Register of Trials. Ongoing studies were sourced through themetaRegister of Current Controlled Trials, International Standard Randomised Controlled Trial Number database, World Health Organization International Clinical Trials Registry Platform Portal and ClinicalTrials.gov. Specialist abstract and conference proceedings were sourced through ISI’s Conference Proceedings Citation Index and British Library’s Electronic Table of Contents (Zetoc). Hand-searching through European Respiratory Society, the American Thoracic Society and British Thoracic Society conference proceedings from 2010 to 2012 was also undertaken, and selected websites were also examined. Title, abstracts and full texts of potentially relevant studies were scanned by two independent reviewers. Primary studies were included if ≈90% of the population had COPD, the majority were of at least moderate severity and reported on any intervention that included a SM component or package. Accepted study designs and outcomes differed between the reviews. Risk of bias for randomised controlled trials (RCTs) was assessed using the Cochrane tool. Random-effects meta-analysis was used to combine studies where appropriate. A Markov model, taking a 30-year time horizon, compared a SM intervention immediately following a hospital admission for an acute exacerbation with UC. Incremental costs and quality-adjusted life-years were calculated, with sensitivity analyses.ResultsFrom 13,355 abstracts, 10 RCTs were included for review 1, one study each for reviews 2 and 3, and 174 RCTs for review 4. Available studies were heterogeneous and many were of poor quality. Meta-analysis identified no evidence of benefit of post-discharge SM support on admissions [hazard ratio (HR) 0.78, 95% confidence interval (CI) 0.52 to 1.17], mortality (HR 1.07, 95% CI 0.74 to 1.54) and most other health outcomes. A modest improvement in health-related quality of life (HRQoL) was identified but this was possibly biased due to high loss to follow-up. The economic model was speculative due to uncertainty in impact on readmissions. Compared with UC, post-discharge SM support (delivered within 6 weeks of discharge) was more costly and resulted in better outcomes (£683 cost difference and 0.0831 QALY gain). Studies assessing the effect of individual components were few but only exercise significantly improved HRQoL (3-month St George’s Respiratory Questionnaire 4.87, 95% CI 3.96 to 5.79). Multicomponent interventions produced an improved HRQoL compared with UC (mean difference 6.50, 95% CI 3.62 to 9.39, at 3 months). Results were consistent with a potential reduction in admissions. Interventions with more enhanced care from health-care professionals improved HRQoL and reduced admissions at 1-year follow-up. Interventions that included supervised or unsupervised structured exercise resulted in significant and clinically important improvements in HRQoL up to 6 months.LimitationsThis review was based on a comprehensive search strategy that should have identified most of the relevant studies. The main limitations result from the heterogeneity of studies available and widespread problems with their design and reporting.ConclusionsThere was little evidence of benefit of providing SM support to patients shortly after discharge from hospital, although effects observed were consistent with possible improvement in HRQoL and reduction in hospital admissions. It was not easy to tease out the most effective components of SM support packages, although interventions containing exercise seemed the most effective. Future work should include qualitative studies to explore barriers and facilitators to SM post exacerbation and novel approaches to affect behaviour change, tailored to the individual and their circumstances. Any new trials should be properly designed and conducted, with special attention to reducing loss to follow-up. Individual participant data meta-analysis may help to identify the most effective components of SM interventions.Study registrationThis study is registered as PROSPERO CRD42011001588.FundingThe National Institute for Health Research Health Technology Assessment programme.
Background Clinical guidelines make vague recommendations as to exercise training (ET) type and dosage to manage chronic non-specific neck pain (CNSNP). Objective To synthesise evidence on the effectiveness of different ET programmes to reduce CNSNP and associated disability, and whether dosage affects outcomes. Methods A systematic review and data synthesis was conducted according to a published registered protocol (PROSPERO CRD42018096187). A sensitive topic-based search was conducted of CINAHL, MEDLINE, EMBASE, PEDro, grey literature sources and key journals from inception to 6 th January 2020 for randomised controlled trials, investigating ET for CNSNP or disability. Two reviewers independently completed eligibility screening, data extraction, risk of bias assessment (Cochrane Risk of Bias Tool) and rated the overall strength of evidence using Grading of Recommendations Assessment, Development and Evaluation. Data was tabulated for narrative synthesis and grouped by intervention, outcome and time point to compare across studies. Results Twenty-six trials from 3990 citations (n = 2288 participants) investigated fifteen ET programmes. High RoB and low sample sizes reduced evidence quality. Clinical heterogeneity prevented meta-analyses. A range of ET programmes reduce pain/disability in the short term (low to moderate evidence). Pillar exercises reduce pain/disability in the intermediate term (low level evidence). Moderate to very large pain reduction is found with ET packages
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.