Abstract:We compute the leading-order evolution of parton distribution functions for all the Standard Model fermions and bosons up to energy scales far above the electroweak scale, where electroweak symmetry is restored. Our results include the 52 PDFs of the unpolarized proton, evolving according to the SU(3), SU(2), U(1), mixed SU(2)×U(1) and Yukawa interactions. We illustrate the numerical effects on parton distributions at large energies, and show that this can lead to important corrections to parton luminosities at a future 100 TeV collider.
We present a resummation of those double-logarithmically enhanced electroweak correction that arise in pp colliders because protons are not SU(2) singlets, by solving DGLAP equations in the full Standard Model. We then show how to match these results with those of fixed-order electroweak calculations. At a 100 TeV pp collider, contributions beyond order α are ∼ 10% at partonic center-of-mass energies of a few TeV. These are mainly due to initial states with massive vector bosons.
Using the known resummation of virtual corrections together with knowledge of the leading-log structure of real radiation in a parton shower, we derive analytic expressions for the resummed real radiation after they have been integrated over all of phase space. Performing a numerical analysis for both the 13 TeV LHC and a 100 TeV pp collider, we show that resummation of the real corrections is at least as important as resummation of the virtual corrections, and that this resummation has a sizable effect for partonic center of mass energies exceeding √ s = O(few TeV). For partonic center of mass energies √ s 10 TeV, which can be reached at a 100 TeV collider, resummation becomes an O(1) effect and needs to be included even for rough estimates of the cross-sections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.