Contextual memory is an intricate process involving synaptic plasticity and network rearrangement. Both are governed by many molecular processes including phosphorylation and modulation of protein expression. However, little is known about the molecules involved in it. Here, we exploited the advantages of a quantitative proteomic approach to identify a great number of molecules in the rat dentate gyrus after a contextual fear conditioning session. Our results allowed us to highlight protein expression patterns, not only related to neuroplasticity, but also to myelin structure, such as myelin basic protein and myelin proteolipid protein showing a decrease in expression. Validation of the modification in protein expression reveals a dynamic profile during the 48 h following the fear conditioning session. The expression of proteins involved in neurite outgrowth, such as BASP-1 and calcineurin B1, and in synaptic structure and function, VAMP2 and RAB3C, was increased in the dentate gyrus of rats submitted to fear conditioning compared to controls. We showed that the increase in BASP-1 protein was specific to fear conditioning learning as it was not present in immediate-shock rats, neither in rats exposed to a novel environment without being shocked. As myelin is known to stabilise synaptic network, the decrease in myelin proteins suggests a neuroglia interactive process taking place in the dentate gyrus in the 24 h following contextual fear learning, which has never been demonstrated before. These results therefore open the way to the study of new plasticity mechanisms underlying learning and memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.