Increased consumption of high-fat diet (HFD) leads to obesity and adverse neurocognitive outcomes. Childhood and adolescence are important periods of brain maturation shaping cognitive function. These periods could consequently be particularly sensitive to the detrimental effects of HFD intake. In mice, juvenile and adulthood consumption of HFD induce similar morphometric and metabolic changes. However, only juvenile exposure to HFD abolishes relational memory flexibility, assessed after initial radial-maze concurrent spatial discrimination learning, and decreases neurogenesis. Our results identify a critical period of development covering adolescence with higher sensitivity to HFD-induced hippocampal dysfunction at both behavioral and cellular levels.
Vitamin A and its derivatives, the retinoids, have been implicated recently in the synaptic plasticity of the hippocampus and might therefore play a role in associated cognitive functions. Acting via transcription factors, retinoids can regulate gene expression via their nuclear receptors [retinoic acid receptors (RARs) and retinoid X receptors]. In a series of experiments, the present study investigated the possible role of age-related downregulation of retinoid-mediated transcription events in the cognitive decline seen in aged mice. We observed that the brain (and hippocampal) levels of retinoid receptors and the expression of specific associated target genes were restored to presenescent (adult) levels in aged mice after acute administration (150 g/kg, s.c.) of retinoic acid (RA). These effects of RA, however, could be abolished by the coadministration of an RAR antagonist. RA was also demonstrated to alleviate the agerelated deficit in the CA1 long-term potentiation efficacy of aged mice in vivo. Moreover, RA was found to alleviate completely the performance deficit of aged mice to the control level in a two-stage spatial discrimination paradigm designed to assess relational memory. This promnesic effect of RA was again susceptible to abolition by RAR antagonist treatment. The parallel molecular, cellular, and behavioral correlates associated with the decrease of retinoid receptor expression and its normalization demonstrated here suggest that the fine regulation of retinoid-mediated gene expression is fundamentally important to optimal brain functioning and higher cognition. Specifically, a naturally occurring dysregulation of retinoidmediated molecular events might be a potential etiological factor for cognitive deterioration during senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.