Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of wheat and barley that leads to reduced yield and mycotoxin contamination of grain, making it unfit for human consumption. FHB is a global problem, with outbreaks in the United States, Canada, Europe, Asia and South America. In the United States alone, total direct and secondary economic losses from 1993 to 2001 owing to FHB were estimated at $7.67 billion. Fhb1 is the most consistently reported quantitative trait locus (QTL) for FHB resistance breeding. Here we report the map-based cloning of Fhb1 from a Chinese wheat cultivar Sumai 3. By mutation analysis, gene silencing and transgenic overexpression, we show that a pore-forming toxin-like (PFT) gene at Fhb1 confers FHB resistance. PFT is predicted to encode a chimeric lectin with two agglutinin domains and an ETX/MTX2 toxin domain. Our discovery identifies a new type of durable plant resistance gene conferring quantitative disease resistance to plants against Fusarium species.
Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye’s incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye–wheat introgressions.
Micronutrients, especially iron (Fe) and zinc (Zn), are deficient in the diets of people in underdeveloped countries. Biofortification of food crops is the best approach for alleviating the micronutrient deficiencies. Identification of germplasm with high grain Fe and Zn and understanding the genetic basis of their accumulation are the prerequisites for manipulation of these micronutrients. Some wild relatives of wheat were found to have higher grain Fe and Zn concentrations compared with the cultivated bread wheat germplasm. One accession of Triticum boeoticum (pau5088) that had relatively higher grain Fe and Zn was crossed with Triticum monococcum (pau14087), and a recombinant inbred line (RIL) population generated from this cross was grown at 2 locations over 2 years. The grains of the RIL population were evaluated for Fe and Zn concentration using atomic absorption spectrophotometer. The grain Fe and Zn concentrations in the RIL population ranged from 17.8 to 69.7 and 19.9 to 64.2 mg/kg, respectively. A linkage map available for the population was used for mapping quantitative trait loci (QTL) for grain Fe and Zn accumulation. The QTL analysis led to identification of 2 QTL for grain Fe on chromosomes 2A and 7A and 1 QTL for grain Zn on chromosome 7A. The grain Fe QTL were mapped in marker interval Xwmc382-Xbarc124 and Xgwm473-Xbarc29, respectively, each explaining 12.6% and 11.7% of the total phenotypic variation and were designated as QFe.pau-2A and QFe.pau-7A. The QTL for grain Zn, which mapped in marker interval Xcfd31-Xcfa2049, was designated as QZn.pau-7A and explained 18.8% of the total phenotypic variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.