Summary Plant hormones are essential for regulating the interactions between plants and their complex biotic and abiotic environments. Each hormone initiates a specific molecular pathway and these different hormone pathways are integrated in a complex network of synergistic, antagonistic and additive interactions. This inter‐pathway communication is called hormone crosstalk. By influencing the immune network topology, hormone crosstalk is essential for tailoring plant responses to diverse microbes and insects in diverse environmental and internal contexts. Crosstalk provides robustness to the immune system but also drives specificity of induced defense responses against the plethora of biotic interactors. Recent advances in dry‐lab and wet‐lab techniques have greatly enhanced our understanding of the broad‐scale effects of hormone crosstalk on immune network functioning and have revealed underlying principles of crosstalk mechanisms. Molecular studies have demonstrated that hormone crosstalk is modulated at multiple levels of regulation, such as by affecting protein stability, gene transcription and hormone homeostasis. These new insights into hormone crosstalk regulation of plant defense are reviewed here, with a focus on crosstalk acting on the jasmonic acid pathway in Arabidopsis thaliana, highlighting the transcription factors MYC2 and ORA59 as major targets for modulation by other hormones.
BackgroundCorrect flower formation requires highly specific temporal and spatial regulation of gene expression. In Arabidopsis thaliana the majority of the master regulators that determine flower organ identity belong to the MADS-domain transcription factor family. The canonical DNA binding motif for this transcription factor family is the CArG-box, which has the consensus CC(A/T)6GG. However, so far, a comprehensive analysis of MADS-domain binding patterns has not yet been performed.ResultsEight publicly available ChIP-seq datasets of MADS-domain proteins that regulate the floral transition and flower formation were analyzed. Surprisingly, the preferred DNA binding motif of each protein was a CArG-box with an NAA extension. Furthermore, motifs of other transcription factors were found in the vicinity of binding sites of MADS-domain transcription factors, suggesting that interaction of MADS-domain proteins with other transcription factors is important for target gene regulation. Finally, conservation of CArG-boxes between Arabidopsis ecotypes was assessed to obtain information about their evolutionary importance. CArG-boxes that fully matched the consensus were more conserved than other CArG-boxes, suggesting that the perfect CArG-box is evolutionary more important than other CArG-box variants.ConclusionOur analysis provides detailed insight into MADS-domain protein binding patterns. The results underline the importance of an extended version of the CArG-box and provide a first view on evolutionary conservation of MADS-domain protein binding sites in Arabidopsis ecotypes.Electronic supplementary materialThe online version of this article (10.1186/s12870-018-1348-8) contains supplementary material, which is available to authorized users.
Transcriptional reprogramming is an integral part of plant immunity. Tight regulation of the immune transcriptome is essential for a proper response of plants to different types of pathogens. Consequently, transcriptional regulators are proven targets of pathogens to enhance their virulence. The plant immune transcriptome is regulated by many different, interconnected mechanisms that can determine the rate at which genes are transcribed. These include intracellular calcium signaling, modulation of the redox state, post-translational modifications of transcriptional regulators, histone modifications, DNA methylation, modulation of RNA polymerases, alternative transcription inititation, the Mediator complex and regulation by non-coding RNAs. In addition, on their journey from transcription to translation, mRNAs are further modulated through mechanisms such as nuclear RNA retention, storage of mRNA in stress granules and P-bodies, and post-transcriptional gene silencing. In this review, we highlight the latest insights into these mechanisms. Furthermore, we discuss some emerging technologies that promise to greatly enhance our understanding of the regulation of the plant immune transcriptome in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.