The
widespread crisis of plastic pollution demands discovery of new and
sustainable approaches to degrade robust plastics such as nylons.
Using a green and sustainable approach based on hydrogenation, in
the presence of a ruthenium pincer catalyst at 150 °C and 70
bar H
2
, we report here the first example of hydrogenative
depolymerization of conventional, widely used nylons and polyamides,
in general. Under the same catalytic conditions, we also demonstrate
the hydrogenation of a polyurethane to produce diol, diamine, and
methanol. Additionally, we demonstrate an example where monomers (and
oligomers) obtained from the hydrogenation process can be dehydrogenated
back to a poly(oligo)amide of approximately similar molecular weight,
thus completing a closed loop cycle for recycling of polyamides. Based
on the experimental and density functional theory studies, we propose
a catalytic cycle for the process that is facilitated by metal–ligand
cooperativity. Overall, this unprecedented transformation, albeit
at the proof of concept level, offers a new approach toward a cleaner
route to recycling nylons.
Hydrogen has long been regarded as an ideal alternative clean energy vector to overcome the drawbacks of fossil technology. However, the direct utilization of hydrogen is challenging, due to low volumetric energy density of hydrogen gas and potential safety issues. Herein, we report an efficient and reversible liquid to liquid organic hydrogen carrier system based on inexpensive, readily available and renewable ethylene glycol. This hydrogen storage system enables the efficient and reversible loading and discharge of hydrogen using a ruthenium pincer complex, with a theoretical hydrogen storage capacity of 6.5 wt%.
A series of base-stabilized silylium species were synthesized and their reactivity toward CO 2 explored, yielding the characterization of a novel N/ Si + FLP-CO 2 adduct. These silicon species are active catalysts in the hydroboration of CO 2 to the methoxide level with 9-BBN, catecholborane (catBH), and pinacolborane (pinBH). Both experiments and DFT calculations highlight the role of the FLP-CO 2 adduct in the catalysis. Depending on the nature of the hydroborane reductant, two distinct mechanisms have been unveiled. While 9-BBN and catBH are able to reduce an intermediate FLP-CO 2 adduct, the hydroboration of CO 2 with pinBH follows a different and novel path where the B−H bond is activated by the silicon-based Lewis acid catalyst. In these mechanisms, the formation of a highly stabilized FLP-CO 2 adduct is found detrimental to the kinetics of the reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.