Purpose: The deleted in liver cancer-1 (DLC-1) gene that encodes a Rho GTPase-activating protein with tumor suppressor function is located on chromosome 8p21-22, a region frequently deleted in prostate carcinomas. This study was designed to determine whether DLC-1 is deregulated in prostate carcinomas and to assess the contribution of DLC-1 alterations to prostate carcinogenesis. Experimental Design: Primary prostate carcinomas, prostate carcinoma cell lines, benign prostatic hyperplasias, and normal prostatic tissues were examined for detection of functional and structural alterations of the DLC-1gene by real-time PCR, methylation-specific PCR, and Southern andWestern blots. Results: Down-regulation or loss of DCL-1 mRNA expression was detected in 10 of 27 (37%) prostate carcinomas, 3 of 5 (60%) prostate carcinoma cell lines, and 5 of 21 (24%) benign prostatic hyperplasias. DLC-1 promoter methylation was identified in 13 of 27 (48%) prostate carcinomas and 2 matching normal tissues and in 15 of 21 (71%) benign prostatic hyperplasias but was absent in 10 normal prostatic tissues from noncancerous individuals. Genomic deletions were found in only 3 prostate carcinomas and 1 benign prostatic hyperplasia. DLC-1 protein was not detected in 8 of 27 (30%) prostate carcinomas and 11of 21 (52%) benign prostatic hyperplasias. Methylation of DLC-1 correlated with age in prostate carcinoma patients (P = 0.006) and with prostate-specific antigen blood levels in benign prostatic hyperplasia patients (P = 0.029). Treatment of the three prostate carcinoma cell lines (PC-3, LNCaP, and 22Rv1) expressing a low level of DLC-1 transcripts with inhibitors of DNA methyltransferase or histone deacetylase increased DLC-1 expression. Conclusions: These results show that the transcriptional silencing of DLC-1 by two epigenetic mechanisms is common and may be involved in the pathogenesis of prostate carcinomas and benign prostatic hyperplasias and could have potential clinical application in the early detection and gene therapy of prostate cancer.
Abstract. Peptide growth factors play an important role in several intracellular processes, such as cellular growth and differentiation, angiogenesis and apoptosis, as well as in carcinogenesis, since they contribute significantly to the malignant transformation. The prostate gland is abundant in growth factors. The two most known prostatic diseases, prostate cancer (PCa) and benign prostatic hyperplasia (BPH), are among the most common diseases that affect elderly men. This study was conducted using a quantitative real-time RT-PCR method in order to determine mRNA expression levels of peptide growth factors VEGF, FGF2, TGFB1, EGF, and IGF1 in tissue specimens from 42 patients with PCa, 42 with BPH, and 10 normal prostate samples obtained post-mortem from young individuals, in order to examine their association with prostatic hyperplasia and neoplasia. Our results show that in PCa, growth factors VEGF, EGF and FGF2 are overexpressed, while TGFB1 and IGF1 have reduced mRNA levels. In BPH, transcript levels of FGF2 and EGF are normal, while VEGF, TGFB1 and IGF1 exhibit downregulation. Further statistical analysis revealed that PCa patients with high levels of PSA blood levels have decreased FGF2 expression (p=0.016). Additionally, cancer patients with low Gleason score (<7) have increased EGF (p=0.035) and IGF1 (p=0.031) mRNA levels. IGF1 levels are also elevated in tumors with TNM stages T1-T2 (p=0.030). In BPH, older patients have reduced EGF expression (p=0.018), while IGF1 is overexpressed in younger patients (p=0.041). Additionally, the coexpression pattern of the five studied growth factors differs significantly among normal, benign and malignant prostate. These results implicate VEGF, FGF2, TGFB1, EGF and IGF1 in the development of both PCa and BPH, rendering them potential targets for disease detection, monitoring and therapy.
The association of p53 codon 72 polymorphism with cancer has been investigated by several scientific groups with controversial results. In the present study, we examined the genotypic frequency of this polymorphism in 54 patients with advanced lung cancer and 99 normal controls from the geographical region of Greece. Sputum and bronchial washing samples from each patient were assayed for the presence of human papillomavirus. Codon 72 heterozygous (Arg/Pro) patients were also analysed for loss of heterozygosity at the TP53 locus, in order to determine the lost p53 allele (Arg or Pro). p53 Arg/Arg genotype was significantly increased in lung cancer patients compared to normal controls (50% vs 24.2%, P50.002). Human papillomavirus was detected only in two patients (3.7%). Loss of heterozygosity at the TP53 locus was found in 14 out of 27 Arg/Pro patients (51.85%). The Pro allele was lost in 11 cases (78.6%), while the Arg allele was lost in three (21.4%). Our results suggest that p53 codon 72 Arg homozygosity is associated with advanced lung cancer, and that the Arg allele is preferentially retained in patients heterozygous for this polymorphism. On the other hand, human papillomavirus infection does not seem to play an important role in lung carcinogenesis.
Abnormal apoptotic events in chronic obstructive pulmonary disease (COPD) subvert cellular homeostasis and may play a primary role in its pathogenesis. However, studies in human subjects are limited.p53 and bcl2 protein expression was measured by western blot on lung tissue specimens from 43 subjects (23 COPD smokers and 20 non-COPD smokers), using beta-actin as internal control. Additionally, p53 and bcl2 expression patterns were evaluated by immunohistochemistry in formalin-fixed, paraffin-embedded lung tissue sections from the same individuals.Western blot analysis showed statistically significant increased p53 protein levels in COPD smokers in comparison with non-COPD smokers (p = 0.038), while bcl2 protein levels were not statistically different between the two groups. Lung immunohistochemistry showed increased ratio of positive p53-stained type II pneumocytes/total type II pneumocytes in COPD smokers compared to non-COPD smokers (p = 0.01), whereas the p53 staining ratio in alveolar macrophages and in lymphocyte-like cells did not differ statistically between the two groups. On the other hand, bcl2 expression did not differ between the two groups in all three cell types.The increased expression of pro-apoptotic p53 in type II pneumocytes of COPD patients not counterbalanced by the anti-apoptotic bcl2 could reflect increased apoptosis in the alveolar epithelium of COPD patients. Our results confirm previous experiments and support the hypothesis of a disturbance in the balance between the pro- and anti-apoptotic mediators in COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.