This paper reexamines the concept of the dealloying critical potential by considering the critical potential to be a kinetically controlled morphological transition dependent not only on extensive system parameters such as alloy and electrolyte composition, but also on the rate of application of an intrinsic parameter such as the potential ramp rate. In the limit of a quasi-static potential sweep rate, an expression for the critical potential is derived which considers both compositional and morphological fluctuations on the alloy surface at the incipient point of either stability ͑passivation͒ or instability ͑bulk dealloying͒. In addition, we present detailed critical potential results for the entire range of Ag-Au alloy compositions in x M AgClO 4 ϩ 1 M HClO 4 and x M AgNO 3 ϩ 1 M HNO 3 ͑x ϭ 10 Ϫ4 , 10 Ϫ3 , 10 Ϫ2 , 10 Ϫ1 , and 1͒. These results are shown to be consistent with the expression for the critical potential. Finally, we present and discuss ancillary experiments examining the effect of potential sweep rate on the determination of the critical potential.
This work is aimed at developing a protocol based on surface limited redox replacement (SLRR) of underpotentially deposited (UPD) Pb layers for the growth of epitaxial and continuous Pt thin films on polycrystalline and single crystalline Au surfaces. Different from previously reported papers using SLRR in multiple immersion or flow cell setups, this work explores the one-cell configuration setup as an alternative to improve the efficiency and quality of the growth. Open circuit chronopotentiometry and quartz-crystal microbalance experiments demonstrate steady displacement kinetics and a yield that is higher than the stoichiometric Pt(II)-Pb exchange ratio (1:1). This high yield is attributed to oxidative adsorption of OH(ad) taking place on Pt along with the displacement process. Also, ex situ scanning tunneling microscopy surface characterization reveals after the first replacement event the formation of a dense Pt cluster network that homogenously covers the Au surface. The Pt films grow homogenously with no significant changes in the cluster distribution and surface roughness observed up to 10 successive replacement events. X-ray diffraction analysis shows distinct (111) crystallographic orientation of thicker Pt films deposited on (111) textured Au thin films. Coarse energy dispersive spectroscopy measurements and finer X-ray photoelectron spectroscopy suggest at least 4 atom % Pb incorporating into the Pt layer compared to 13 atom % alloyed Cu when the growth is carried out by SLRR of Cu UPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.