Nature's smartness and efficient assembling cascade type reactions inspired biologists and chemists all around the world. Tremendous effort has been directed towards the understanding and mimicking of such networks. In recent years considerable progress has been made in developing multistep one-pot reactions combining either advantage of chemo-, regio-, and stereoselectivity of biocatalysts or promiscuity and productivity of chemocatalysts. In this context several concepts, inspired by different disciplines (biocatalysis, metabolic engineering, synthetic chemistry, and material science), have been evolved. This review will focus on major contributions in the field of cascade reactions over the last three years.
BackgroundGut microbes influence animal health and thus, are potential targets for interventions that slow aging. Live E. coli provides the nematode worm Caenorhabditis elegans with vital micronutrients, such as folates that cannot be synthesized by animals. However, the microbe also limits C. elegans lifespan. Understanding these interactions may shed light on how intestinal microbes influence mammalian aging.ResultsSerendipitously, we isolated an E. coli mutant that slows C. elegans aging. We identified the disrupted gene to be aroD, which is required to synthesize aromatic compounds in the microbe. Adding back aromatic compounds to the media revealed that the increased C. elegans lifespan was caused by decreased availability of para-aminobenzoic acid, a precursor to folate. Consistent with this result, inhibition of folate synthesis by sulfamethoxazole, a sulfonamide, led to a dose-dependent increase in C. elegans lifespan. As expected, these treatments caused a decrease in bacterial and worm folate levels, as measured by mass spectrometry of intact folates. The folate cycle is essential for cellular biosynthesis. However, bacterial proliferation and C. elegans growth and reproduction were unaffected under the conditions that increased lifespan.ConclusionsIn this animal:microbe system, folates are in excess of that required for biosynthesis. This study suggests that microbial folate synthesis is a pharmacologically accessible target to slow animal aging without detrimental effects.
Joined forces: Alcohol dehydrogenase, enoate reductase, and Baeyer–Villiger monooxygenase are combined in a cascade reaction by coexpression in E. coli to have a recombinant whole‐cell biocatalyst. Such an artificial metabolic “mini”‐pathway provides access to functionalized chiral compounds in high yields and optical purities as exemplified for kinetic resolutions, desymmetrizations, and regiodivergent biotransformations.
We investigated the valorisation of limonene containing waste product orange peel, and performed a biocatalytic cascade for the production of chiral carvolactone solely in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.