Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic form of diffuse lung disease occurring mainly in older adults. Increased lysophosphatidic acid (LPA) concentrations have been reported in the alveolar space of both idiopathic pulmonary fibrosis patients and a corresponding animal model, whereas the genetic deletion or pharmacological inhibition of LPA receptor 1 attenuated the development of the modeled disease, suggesting a direct involvement of LPA in disease pathogenesis. In this report, increased concentrations of autotaxin (ATX; ENPP2), the enzyme largely responsible for extracellular LPA production, were detected in both murine and human fibrotic lungs. The genetic deletion of ATX from bronchial epithelial cells or macrophages attenuated disease severity, establishing ATX as a novel player in IPF pathogenesis. Furthermore, the pharmacological inhibition of ATX attenuated the development of the modeled disease, suggesting that ATX is a possible therapeutic target in IPF.
Comparative expression profiling was shown to be a highly efficient method in identifying deregulated genes and pathways. Moreover, tissue microarrays and computerized image analysis allowed for the high-throughput and unbiased assessment of histopathologic sections, adding substantial confidence in pathologic evaluations. More importantly, our results suggest an early primary role of HIF-1 in alveolar epithelial cell homeostasis and disease pathogenesis, provide insights on the pathophysiologic differences of different interstitial pneumonias, and indicate the importance of assessing the efficacy of pharmacologic inhibitors of HIF-1 activity in the treatment of pulmonary fibrosis.
Autotaxin (ATX) is a secreted glycoprotein widely present in biological fluids, originally isolated from the supernatant of melanoma cells as an autocrine motility stimulation factor. Its enzymatic product, lysophosphatidic acid (LPA), is a phospholipid mediator that evokes growth-factor-like responses in almost all cell types through G-protein coupled receptors. To assess the role of ATX and LPA signalling in pathophysiology, a conditional knockout mouse was created. Ubiquitous, obligatory deletion resulted to embryonic lethality most likely due to aberrant vascular branching morphogenesis and chorio-allantoic fusion. Moreover, the observed phenotype was shown to be entirely depended on embryonic, but not extraembryonic or maternal ATX expression. In addition, E9.5 ATX null mutants exhibited a failure of neural tube closure, most likely independent of the circulatory failure, which correlated with decreased cell proliferation and increased cell death. More importantly, neurite outgrowth in embryo explants was severely compromised in mutant embryos but could be rescued upon the addition of LPA, thus confirming a role for ATX and LPA signalling in the development of the nervous system. Finally, expression profiling of mutant embryos revealed attenuated embryonic expression of HIF-1a in the absence of ATX, suggesting a novel effector pathway of ATX/LPA.
BackgroundFibrosis, the replacement of functional tissue with excessive fibrous tissue, can occur in all the main tissues and organ systems, resulting in various pathological disorders. Idiopathic Pulmonary Fibrosis is a prototype fibrotic disease involving abnormal wound healing in response to multiple sites of ongoing alveolar epithelial injury.Methodology/Principal FindingsTo decipher the role of TNF and TNF-mediated inflammation in the development of fibrosis, we have utilized the bleomycin-induced animal model of Pulmonary Fibrosis and a series of genetically modified mice lacking components of TNF signaling. Transmembrane TNF expression is shown to be sufficient to elicit an inflammatory response, but inadequate for the transition to the fibrotic phase of the disease. Soluble TNF expression is shown to be crucial for lymphocyte recruitment, a prerequisite for TGF-b1 expression and the development of fibrotic lesions. Moreover, through a series of bone marrow transfers, the necessary TNF expression is shown to originate from the non-hematopoietic compartment further localized in apoptosing epithelial cells.ConclusionsThese results suggest a primary detrimental role of soluble TNF in the pathologic cascade, separating it from the beneficial role of transmembrane TNF, and indicate the importance of assessing the efficacy of soluble TNF antagonists in the treatment of Idiopathic Pulmonary Fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.