Objectives This report aims to provide clear recommendations and practical guidance from a panel of UK retinal experts on an aflibercept treat-and-extend (T&E) pathway that can be implemented in clinical practice. These recommendations may help service providers across the NHS intending to implement a T&E approach, with the aim of effectively addressing the capacity and resource issues putting strain on UK neovascular age-related macular degeneration (nAMD) services while promoting patients' best interests throughout. Methods Two structured roundtable meetings of retinal specialists were held in London, UK on 7 December 2018 and 1 March 2019. These meetings were organised and funded by Bayer. Results The panel provided recommendations for an aflibercept T&E pathway and developed specific criteria based on visual acuity, retinal morphology and optical coherence tomography imaging to guide reduction, maintenance and extension of injection intervals. They also discussed the extension of treatment intervals by 2-or 4-week adjustments to a maximum treatment interval of 16 weeks, the management of retinal fluid and the stopping of treatment. Conclusions The long-term benefits of implementing a T&E pathway may include superior visual outcomes compared with a pro re nata (PRN; as needed) protocol, and a lower treatment burden compared with a fixed protocol, which is likely to improve service capacity. Furthermore, the predictable nature of a T&E approach compared with a PRN service may aid capacity planning for the future nAMD treatment demand.
Tissue engineering is a rapidly advancing field that is likely to transform how medicine is practised in the near future. For hollow organs such as those found in the cardiovascular and respiratory systems or gastrointestinal tract, tissue engineering can provide replacement of the entire organ or provide restoration of function to specific regions. Larger tissue-engineered constructs often require biomaterial-based scaffold structures to provide support and structure for new tissue growth. Consideration must be given to the choice of material and manufacturing process to ensure the de novo tissue closely matches the mechanical and physiological properties of the native tissue. This review will discuss some of the approaches taken to date for fabricating hollow organ scaffolds and the selection of appropriate biomaterials.
Muscle degeneration is a prevalent disease, particularly in aging societies where it has a huge impact on quality of life and incurs colossal health costs. Suitable donor sources of smooth muscle cells are limited and minimally invasive therapeutic approaches are sought that will augment muscle volume by delivering cells to damaged or degenerated areas of muscle. For the first time, we report the use of highly porous microcarriers produced using thermally induced phase separation (TIPS) to expand and differentiate adipose-derived mesenchymal stem cells (AdMSCs) into smooth muscle-like cells in a format that requires minimal manipulation before clinical delivery. AdMSCs readily attached to the surface of TIPS microcarriers and proliferated while maintained in suspension culture for 12 days. Switching the incubation medium to a differentiation medium containing 2 ng/ mL transforming growth factor beta-1 resulted in a significant increase in both the mRNA and protein expression of cell contractile apparatus components caldesmon, calponin, and myosin heavy chains, indicative of a smooth muscle cell-like phenotype. Growth of smooth muscle cells on the surface of the microcarriers caused no change to the integrity of the polymer microspheres making them suitable for a cell-delivery vehicle. Our results indicate that TIPS microspheres provide an ideal substrate for the expansion and differentiation of AdMSCs into smooth muscle-like cells as well as a microcarrier delivery vehicle for the attached cells ready for therapeutic applications.
These observational data provide an indication of likely acceptance of autologous cell-based therapies for birth injury incontinence and will help with designing new therapeutic approaches.
Cell therapy is an emerging option for regenerating skeletal muscle. Improved delivery methods for anchoragedependent myoblasts are likely to improve integration and function of transplanted muscle cells. Highly porous microspheres, produced using thermally induced phase separation (TIPS), have features ideally suited for minimally invasive cell delivery. The purpose of this study was to investigate, for the first time, the use of TIPS microspheres as highly porous microcarriers for manipulation of human skeletal muscle myoblasts (HSMM) under defined culture conditions. HSMM cells readily attached to the surface of poly (DL-lactide-coglycolide) (PLGA) TIPS microcarriers, where they were induced to continue proliferating or to be driven towards differentiation whilst under static-dynamic culture conditions for 7 days. Switching from proliferation medium to differentiation medium for 7 days, resulted in increased protein expression of skeletal muscle cell contractile apparatus components, MyoD and skeletal muscle myosin heavy chain, compared with cells cultured on conventional culture plasticware for the same duration (p < 0.001). Growth of myoblasts on the surface of the microcarriers and their migration following simulated delivery, caused no change to the proliferative capacity of cells over 7 days. Results from this study demonstrate that TIPS microspheres provide an ideal vehicle for the expansion and delivery of myoblasts for therapeutic applications. Transplantation of myoblasts anchored to a substrate, rather than in suspension, will reduce the amount of ex vivo manipulation required during preparation of the product and allows cells to be delivered in a more natural state. This will improve the ability to control cell dosage and increase the likelihood of efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.