OBJECTIVERecent large randomized trials have linked adverse cardiovascular and cerebrovascular events with hypoglycemia. However, the integrated physiological and vascular biological mechanisms occurring during hypoglycemia have not been extensively examined. Therefore, the aim of this study was to determine whether 2 h of moderate clamped hypoglycemia could decrease fibrinolytic balance and activate pro-atherothrombotic mechanisms in individuals with type 1 diabetes and healthy individuals.RESEARCH DESIGN AND METHODSThirty-five healthy volunteers (19 male and 16 female subjects age 32 ± 2 years, BMI 26 ± 2 kg/m2, A1C 5.1 ± 0.1%) and twenty-four with type 1 diabetes (12 male and 12 female subjects age 33 ± 3 years, BMI 24 ± 2 kg/m2, A1C 7.7 ± 0.2%) were studied during either a 2-h hyperinsulinemic (9 pmol · kg−1 · min−1) euglycemic or hypoglycemic (2.9 ± 0.1 mmol/l) clamp or both protocols. Plasma glucose levels were normalized overnight in type 1 diabetic subjects prior to each study.RESULTSInsulin levels were similar (602 ± 44 pmol/l) in all four protocols. Glycemia was equivalent in both euglycemic protocols (5.2 ± 0.1 mmol/l), and the level of hypoglycemia was also equivalent in both type 1 diabetic subjects and healthy control subjects (2.9 ± 0.1 mmol/l). Using repeated ANOVA, it was determined that plasminogen activator inhibitor (PAI-1), vascular cell adhesion molecule (VCAM), intercellular adhesion molecule (ICAM), E-selectin, P-selectin, interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and adiponectin responses were all significantly increased (P < 0.05) during the 2 h of hyperinsulinemic hypoglycemia as compared with euglycemia in healthy control subjects. All measures except PAI-1 were also found to be increased during hypoglycemia compared with euglycemia in type 1 diabetes.CONCLUSIONSIn summary, moderate hypoglycemia acutely increases circulating levels of PAI-1, VEGF, vascular adhesion molecules (VCAM, ICAM, E-selectin), IL-6, and markers of platelet activation (P-selectin) in individuals with type 1 diabetes and healthy individuals. We conclude that acute hypoglycemia can result in complex vascular effects including activation of prothrombotic, proinflammatory, and pro-atherogenic mechanisms in individuals with type 1 diabetes and healthy individuals.
The aim of this study was to determine the effects of single and repeated episodes of clamped hypoglycemia on fibrinolytic balance, proinflammatory biomarkers, proatherothrombotic mechanisms, and endothelial function. Twenty healthy individuals (12 male and 8 female) were studied during separate 2-day randomized protocols. Day 1 consisted of either two 2-h hyperinsulinemic (812 ± 50 pmol/L)-euglycemic (5 ± 0.1 mmol/L) or hyperinsulinemic (812 ± 50 pmol/L)-hypoglycemic (2.9 ± 0.1 mmol/L) clamps. Day 2 consisted of a single 2-h hyperinsulinemic-hypoglycemic clamp. Two-dimensional Doppler ultrasound was used to determine brachial arterial endothelial function. Plasminogen activator inhibitor 1, vascular cell adhesion molecule-1, intracellular adhesion molecule-1, E-selectin, P-selectin, TAT (thrombin/antithrombin complex), tumor necrosis factor-α, and interleukin-6 responses were increased (P < 0.05) during single or repeated hypoglycemia compared with euglycemia. Endogenous and exogenous nitric oxide (NO)-mediated vasodilation were both impaired by repeated hypoglycemia. Neuroendocrine and autonomic nervous system (ANS) responses were also blunted by repeated hypoglycemia (P < 0.05). In summary, acute moderate hypoglycemia impairs fibrinolytic balance; increases proinflammatory responses, platelet activation, and coagulation biomarkers; and reduces NO-mediated endothelial function in healthy individuals. Repeated episodes of hypoglycemia further impair vascular function by additionally reducing exogenously NO-mediated endothelial function and increasing coagulation biomarkers. We conclude that despite reduced neuroendocrine and ANS responses, antecedent hypoglycemia results in greater endothelial dysfunction and an increased proatherothrombotic state compared with a single acute episode of hypoglycemia.
We investigated the separate and combined effects of hyperglycemia and hyperinsulinemia on markers of endothelial function, proinflammatory and proatherothrombotic responses in overweight/obese nondiabetic humans. Twenty-two individuals (13 F/9 M, BMI 30.1 ± 4.1 kg/m(2)) were studied during four randomized, single-blind protocols. The pancreatic clamp technique was combined with 4-h glucose clamps consisting of either 1) euinsulinemia-euglycemia, 2) euinsulinemia-hyperglycemia, 3) hyperinsulinemia-hyperglycemia, or 4) hyperinsulinemia-euglycemia. Insulin levels were higher (998 ± 66 vs. 194 ± 22 pmol/l) during hyperinsulinemia compared with euinsulinemia. Glucose levels were 11.1 mmol/l during hyperinsulinemia compared with 5.1 ± 0.1 mmol/l during euglycemia. VCAM, ICAM, P-selectin, E-selectin, IL-6, adiponectin, and PAI-1 responses were all increased (P < 0.01-0.0001), and endothelial function was decreased (P < 0.0005) during euinsulinemia-hyperglycemia compared with other protocols. Hyperinsulinemia in the presence of hyperglycemia prevented the increase in proinflammatory and proatherothrombotic markers while also normalizing vascular endothelial function. We conclude that 4 h of moderate hyperglycemia can result in increases of proinflammatory markers (ICAM, VCAM, IL-6, E-selectin), platelet activation (P-selectin), reduced fibrinolytic balance (increased PAI-1), and disordered endothelial function in a group of obese and overweight individuals. Hyperinsulinemia prevents the actions of moderate hyperglycemia to reduce endothelial function and increase proinflammatory and proatherothrombotic markers.
OBJECTIVETo determine the pharmacokinetic and pharmacodynamic dose-response effects of insulin glargine administered subcutaneously in individuals with type 2 diabetes.RESEARCH DESIGN AND METHODSTwenty obese type 2 diabetic individuals (10 male and 10 female, aged 50 ± 3 years, with BMI 36 ± 2 kg/m2 and A1C 8.3 ± 0.6%) were studied in this single-center, placebo-controlled, randomized, double-blind study. Five subcutaneous doses of insulin glargine (0, 0.5, 1.0, 1.5, and 2.0 units/kg) were investigated on separate occasions using the 24-h euglycemic clamp technique.RESULTSGlargine duration of action to reduce glucose, nonessential fatty acid (NEFA), and β-hydroxybutyrate levels was close to or >24 h for all four doses. Increases in glucose flux revealed no discernible peak and were modest with maximal glucose infusion rates of 9.4, 6.6, 5.5, and 2.8 μmol/kg/min for the 2.0, 1.5, 1.0, and 0.5 units/kg doses, respectively. Glargine exhibited a relatively hepatospecific action with greater suppression (P < 0.05) of endogenous glucose production (EGP) compared with little or no increases in glucose disposal.CONCLUSIONA single subcutaneous injection of glargine at a dose of ≥0.5 units/kg can acutely reduce glucose, NEFA, and ketone body levels for 24 h in obese insulin-resistant type 2 diabetic individuals. Glargine lowers blood glucose by mainly inhibiting EGP with limited effects on stimulating glucose disposal. Large doses of glargine have minimal effects on glucose flux and retain a relatively hepatospecific action in type 2 diabetes.
Background The comparative effects of acute moderate hyperglycemia and hypoglycemia on in-vivo endothelial function together with pro-inflammatory and pro-atherothrombotic responses in healthy individuals have not been determined. Methods To investigate this question 45 healthy subjects were compared during glucose clamp studies consisting of euinsulinemic hyperglycemia and hyperinsulinemic hyperglycemia (plasma glucose 11.1 mmol/L, both with pancreatic clamps) and hyperinsulinemic euglycemia and hyperinsulinemic hypoglycemia (plasma glucose 5.1 and 2.9 mmol/L, respectively). Two D doppler ultrasound was used to determine brachial artery endothelial function. Results Insulin levels during euinsulinemia hyperglycemia were 194±23 and (850±49–988±114) pmol/L during all hyperinsulinemic protocols. Responses of VCAM-1, ICAM-1, E-Selectin, P-selectin, PAI-1, and IL-6 were increased (p<0.05-0.0001) during euinsulinemic hyperglycemia or hypoglycemia as compared to hyperinsulinemic euglycemia or hyperinsulinemic hyperglycemia. PAI-1 was increased (p<0.04) during hypoglycemia as compared to euinsulinemic hyperglycemia, TNF-α responses were also increased during hypoglycemia as compared to hyperinsulinemic euglycemia or hyperinsulinemic hyperglycemia (p<0.05). In vivo endothelial function was similarly blunted by acute moderate hyperglycemia or hypoglycemia. Conclusion In summary, acute moderate hypoglycemia and euinsulinemic hyperglycemia can result in similar endothelial dysfunction and pro-atherothrombotic responses. Fibrinolytic balance was reduced by a greater extent by hypoglycemia as compared to moderate hyperglycemia. Acutely, hyperinsulinemia can prevent the acute pro-atherothrombotic and pro-inflammatory effects of moderate hyperglycemia but not hypoglycemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.