Spin optics provides a route to control light, whereby the photon helicity (spin angular momentum) degeneracy is removed due to a geometric gradient onto a metasurface. The alliance of spin optics and metamaterials offers the dispersion engineering of a structured matter in a polarization helicity-dependent manner. We show that polarization-controlled optical modes of metamaterials arise where the spatial inversion symmetry is violated. The emerged spin-split dispersion of spontaneous emission originates from the spin-orbit interaction of light, generating a selection rule based on symmetry restrictions in a spin-optical metamaterial. The inversion asymmetric metasurface is obtained via anisotropic optical antenna patterns. This type of metamaterial provides a route for spin-controlled nanophotonic applications based on the design of the metasurface symmetry properties.
Observation of optical spin Hall effects (OSHEs) manifested by a spin-dependent momentum redirection is presented. The effect occurring solely as a result of the curvature of the coupled localized plasmonic chain is regarded as the locally isotropic OSHE, while the locally anisotropic OSHE arises from the interaction between the optical spin and the local anisotropy of the plasmonic mode rotating along the chain. A wavefront phase dislocation was observed in a circular curvature, in which the dislocation strength was enhanced by the locally anisotropic effect.
We examine, both experimentally and theoretically, an interaction of tightly focused polarized light with a slit on a metal surface supporting plasmon-polariton modes. Remarkably, this simple system can be highly sensitive to the polarization of the incident light and offers a perfect quantum weak measurement tool with a built-in postselection in the plasmon-polariton mode. We observe the plasmonic spin Hall effect in both coordinate and momentum spaces which is interpreted as weak measurements of the helicity of light with real and imaginary weak values determined by the input polarization. Our experiment combines the advantages of (i) quantum weak measurements, (ii) near-field plasmonic systems, and (iii) high-numerical aperture microscopy in employing the spin-orbit interaction of light and probing light chirality.
Observation of a spin symmetry breaking effect in plasmonic nanoscale structures due to spin-orbit interaction is presented. We demonstrate a nanoplasmonic structure which exhibits a crucial role of an angular momentum (AM) selection rule in a light-surface plasmon scattering process. In our experiment, the intrinsic AM (spin) of the incident radiation is coupled to the extrinsic momentum (orbital AM) of the surface plasmons via spin-orbit interaction. Due to this effect, we achieved a spin-controlled enhanced transmission through a coaxial nanoaperture.
Photonic gradient metasurfaces are ultrathin electromagnetic wave-molding metamaterials that provide a route for realizing flat optics. However, the up-to-date metasurface design, manifested by imprinting the required phase profile for a single, on-demand light manipulation functionality, is not compatible with the desired goal of multifunctional flat optics. Here, we report on a generic concept to control multifunctional optics by disordered (random) gradient metasurfaces with a custom-tailored geometric phase. This approach combines the peculiar ability of random patterns to support an extraordinary information capacity and the polarization helicity control in the geometric phase mechanism, simply implemented in a two-dimensional structured matter by imprinting optical antenna patterns. By manipulating the local orientations of the nanoantennas, we generate multiple wavefronts with different functionalities via mixed random antenna groups, where each group controls a different phase function. Disordered gradient metasurfaces broaden the applicability of flat optics, as they offer all-optical manipulation by multitask wavefront shaping via a single ultrathin nanoscale photonic device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.