BackgroundThe RING domain-containing protein RING finger protein 11 (RNF11) is a member of the A20 ubiquitin-editing protein complex and modulates peripheral NF-κB signaling. RNF11 is robustly expressed in neurons and colocalizes with a population of α-synuclein-positive Lewy bodies and neurites in Parkinson disease patients. The NF-κB pathway has an important role in the vertebrate nervous system, where the absence of NF-κB activity during development can result in learning and memory deficits, whereas chronic NF-κB activation is associated with persistent neuroinflammation. We examined the functional role of RNF11 with respect to canonical NF-κB signaling in neurons to gain understanding of the tight association of inflammatory pathways, including NF-κB, with the pathogenesis of neurodegenerative diseases.Methods and resultsLuciferase assays were employed to assess NF-κB activity under targeted short hairpin RNA (shRNA) knockdown of RNF11 in human neuroblastoma cells and murine primary neurons, which suggested that RNF11 acts as a negative regulator of canonical neuronal NF-κB signaling. These results were further supported by analyses of p65 translocation to the nucleus following depletion of RNF11. Coimmunoprecipitation experiments indicated that RNF11 associates with members of the A20 ubiquitin-editing protein complex in neurons. Site-directed mutagenesis of the myristoylation domain, which is necessary for endosomal targeting of RNF11, altered the impact of RNF11 on NF-κB signaling and abrogated RNF11’s association with the A20 ubiquitin-editing protein complex. A partial effect on canonical NF-κB signaling and an association with the A20 ubiquitin-editing protein complex was observed with mutagenesis of the PPxY motif, a proline-rich region involved in Nedd4-like protein interactions. Last, shRNA-mediated reduction of RNF11 in neurons and neuronal cell lines elevated levels of monocyte chemoattractant protein 1 and TNF-α mRNA and proteins, suggesting that NF-κB signaling and associated inflammatory responses are aberrantly regulated in the absence of RNF11.ConclusionsOur findings support the hypothesis that, in the nervous system, RNF11 negatively regulates canonical NF-κB signaling. Reduced or functionally compromised RNF11 could influence NF-κB-associated neuronal functions, including exaggerated inflammatory responses that may have implications for neurodegenerative disease pathogenesis and progression.
RING finger protein 11 (RNF11), a negative regulator of NF-κB signaling pathway, colocalizes with α-synuclein and is sequestered in Lewy bodies in Parkinson’s disease (PD). Since persistent NF-κB activation is reported in PD, in this report we investigated if RNF11 expression level is correlated to activated NF-κB in PD. We examined RNF11 expression levels in correlation to phospho-p65, a marker for activated NF-κB, in control and PD brain tissue from cerebral cortex. In addition we performed double immunofluorescence labeling experiments to confirm this correlation. Our investigations demonstrated that the neuronal RNF11 expression was down-regulated in PD and was usually associated with increased expression of phospho-p65. Double labeling confirmed that loss of neuronal RNF11 was linked to increased phospho-p65 expression, suggesting that persistent presence of NF-κB activation could be due to decreased levels of its negative regulator. Our data exemplifies the relevance of RNF11 and persistent NF-κB activation in PD.
Activation of innate and adaptive immune responses is tightly regulated, as insufficient activation could result in defective clearance of pathogens, while excessive activation might lead to lethal systemic inflammation or autoimmunity. A20 functions as a negative regulator of innate and adaptive immunity by inhibiting NF-κB activation. A20 mediates its inhibitory function in a complex with other proteins including RNF11 and Itch, both E3 ubiquitin ligases and TAX1BP1, an adaptor protein. Since NF-κB has been strongly implicated in various neuronal functions, we predict that its inhibitor, the A20 complex, is also present in the nervous system. In efforts to better understand the role of A20 complex and NF-κB signaling pathway, we determined regional distribution of A20 mRNA as well as protein expression levels and distribution of RNF11, TAX1BP1 and Itch, in different brain regions. The distribution of TRAF6 was also investigated since TRAF6, also an E3 ligase, has an important role in NF-κB signaling pathway. Our investigations, for the first time, describe and demonstrate that the essential components of the A20 ubiquitin-editing complex are present and mainly expressed in neurons. The A20 complex components are also differentially expressed throughout the human brain. This study provides useful information about region specific expression of the A20 complex components that will be invaluable while determining the role of NF-κB signaling pathway in neuronal development and degeneration.
Microglia are resident macrophages in the central nervous system (CNS) that play a major role in neuroinflammation and pathogenesis of several neurodegenerative diseases. Upon activation, microglia releases a multitude of pro-inflammatory factors that initiate and sustain an inflammatory response by activating various signalling pathways, including the NF-κB pathway in a feed forward cycle. In microglial cells, activation of NF-κB signalling is normally transient, while sustained NF-κB activation is associated with persistent neuroinflammation. RING finger protein 11 (RNF11), in association with A20 ubiquitin-editing complex, is one of the key negative regulators of NF-κB signalling pathway in neurons. In this study, we have demonstrated and confirmed this role of RNF11 in microglia, the immune cells of the CNS. Coimmunoprecipitation experiments showed that RNF11 and A20 interact in a microglial cell line, suggesting the presence of A20 ubiquitin-editing protein complex in microglial cells. Next, using targeted short hairpin RNA (shRNA) knockdown and over-expression of RNF11, we established that RNF11 expression levels are inversely related to NF-κB activation, as evident from altered expression of NF-κB transcribed genes. Moreover our studies, illustrated that RNF11 confers protection against LPS-induced cell cytotoxicity. Thus our investigations clearly demonstrated that microglial RNF11 is a negative regulator of NF-κB signalling pathway and could be a strong potential target for modulating inflammatory responses in neurodegenerative diseases.
Chronic activation of the NF-κB pathway is associated with progressive neurodegeneration in Parkinson’s disease (PD). Given the role of neuronal RING finger protein 11 (RNF11) as a negative regulator of the NF-κB pathway, in this report we investigated the function of RNF11 in dopaminergic cells in PD-associated neurodegeneration. We found that RNF11 knock-down in an in vitro model of PD mediated protection against 6-OHDA-induced toxicity. In converse, over-expression of RNF11 enhanced 6-OHDA-induced dopaminergic cell death. Furthermore, by directly manipulating NF-κB signaling, we showed that the observed RNF11-enhanced 6-OHDA toxicity is mediated through inhibition of NF-κB-dependent transcription of TNF-α, antioxidants GSS and SOD1, and anti-apoptotic factor BCL2. Experiments in an in vivo 6-OHDA rat model of PD recapitulated the in vitro results. In vivo targeted RNF11 over-expression in nigral neurons enhanced 6-OHDA toxicity, as evident by increased amphetamine-induced rotations and loss of nigral dopaminergic neurons as compared to controls. This enhanced toxicity was coupled with down-regulation of NF-κB transcribed GSS, SOD1, BCL2, and neurotrophic factor BDNF mRNA levels, in addition to decreased TNF-α mRNA levels in ventral mesenchephalon samples. In converse, knockdown of RNF11 was associated with protective phenotypes and increased expression of above-mentioned NF-κB transcribed genes. Collectively, our in vitro and in vivo data suggest that RNF11-mediated inhibition of NF-κB in dopaminergic cells exaggerates 6-OHDA toxicity by inhibiting neuroprotective responses while loss of RNF11 inhibition on NF-κB activity promotes neuronal survival. The decreased expression of RNF11 in surviving cortical and nigral tissue detected in PD patients, thus implies a compensatory response in the diseased brain to PD-associated insults. In summary, our findings demonstrate that RNF11 in neurons can modulate susceptibility to 6-OHDA toxicity through NF-κB mediated responses. This neuron-specific role of RNF11 in the brain has important implications for targeted therapeutics aimed at preventing neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.