Aims Immunomodulation in heart failure (HF) has been studied in several randomized controlled trials (RCTs) with variable effects on cardiac structure, function, and outcomes. We sought to determine the effect of immunomodulation on left ventricular ejection fraction (LVEF), LV end-diastolic dimension (LVEDD), and all-cause mortality in patients with HF with reduced ejection fraction (HFrEF) through meta-analyses and trial sequential analyses (TSAs) of RCTs. Methods and results PubMed, Embase®, Cochrane CENTRAL, and ClinicalTrials.gov were systematically reviewed to identify RCTs that studied the effects of immunomodulation in patients with HFrEF. The primary endpoint in this analysis was change in LVEF. Secondary outcomes were changes in LVEDD and all-cause mortality. TSA was used to quantify the statistical reliability of data in the cumulative meta-analyses. Nineteen RCTs with 1341 HFrEF subjects were eligible for analyses. The aetiology of HF, specific immunomodulation strategy, and treatment duration were variable across trials. Immunomodulation led to a greater improvement in LVEF [mean difference: +5.7% 95% confidence interval (CI): 3.0-8.5%, P < 0.001] and reduction in LVEDD (mean difference: À3.7 mm, 95% CI: À7.0 to À0.4 mm, P = 0.028) than no immunomodulation in meta-analyses and TSAs. We observed a non-significant decrease in all-cause mortality among those on immumomodulation (risk ratio: 0.7, 95% CI: 0.4-1.3, P = 0.234), but the Z-curve for cumulative treatment effect of immunomodulation in the TSA did not cross the boundary of futility. Conclusions Immunomodulation led to improved cardiac structure and function in patients with HFrEF. While these benefits did not translate into a significant improvement in mortality, our analysis suggests that larger studies of targeted immunomodulation are needed to understand the true benefits.
Background We compared the diagnostic accuracy of longitudinal strain (LS) imaging during stress echocardiography with visual assessment of wall motion (WM) for detecting significant coronary artery disease (CAD). Methods Our systematic search included studies reporting diagnostic measures for LS imaging and visual assessment of WM for detecting significant CAD during stress echocardiography. Summary diagnostic accuracy measures including area under the curve (AUC), sensitivity, specificity, diagnostic odds ratio (DOR), and likelihood ratios (LRs) were estimated. Results In thirteen studies with 978 patients, ten studies used invasive coronary angiography as the reference standard. Pooled AUC for diagnosing significant CAD was 0.92 (95% confidence interval [CI] 0.89–0.94) for LS imaging as compared to 0.83 (95% CI 0.80–0.86), P < 0.001 for visual assessment of WM. LS imaging had higher sensitivity (88% [95% CI 84–92] vs 74% [95% CI 68–80], P < 0.001) and comparable specificity to visual assessment of WM (80% [95% CI 72–87] vs 83% [95% CI 74–90], P = 0.592). The DOR for LS imaging and visual assessment of WM was 31 and 15, P = 0.254, respectively. The positive LR was 4.5 for both; negative LR was 0.14 and 0.31, P = 0.002 for LS imaging and visual assessment of WM, respectively. Conclusions Longitudinal strain imaging during stress echocardiography has better diagnostic accuracy for detecting significant CAD as compared to visual assessment of WM. Studies using larger sample size and standardized techniques of strain measurement are required to further ascertain the added advantage of strain measurement over visual assessment alone.
The impact of the machine perfusion of donation after circulatory death (DCD) hearts with the novel Custodiol-N solution on diastolic and coronary microvascular dysfunction is unknown. Porcine DCD-hearts were maintained four hours by perfusion with normothermic blood (DCD-B), hypothermic Custodiol (DCD-C), or Custodiol-N (DCD-CN), followed by one hour of reperfusion with fresh blood, including microvascular and contractile evaluation. In another group (DCD group), one hour of reperfusion, including microvascular and contractile evaluation, was performed without a previous maintenance period (all groups N = 5). We measured diastolic function with a balloon catheter and microvascular perfusion by Laser-Doppler-Technology, resulting in Laser-Doppler-Perfusion (LDP). We performed immunohistochemical staining and gene expression analysis. The developed pressure was improved in DCD-C and DCD-CN. The diastolic pressure decrement (DCD-C: −1093 ± 97 mmHg/s; DCD-CN: −1703 ± 329 mmHg/s; DCD-B: −690 ± 97 mmHg/s; p < 0.05) and relative LDP (DCD-CN: 1.42 ± 0.12; DCD-C: 1.11 ± 0.13; DCD-B: 1.22 ± 0.27) were improved only in DCD-CN. In DCD-CN, the expression of eNOS increased, and ICAM and VCAM decreased. Only in DCD-B compared to DCD, the pathways involved in complement and coagulation cascades, focal adhesion, fluid shear stress, and the IL-6 and IL-17 pathways were upregulated. In conclusion, machine perfusion with Custodiol-N improves diastolic and microvascular function and preserves the microvascular endothelium of porcine DCD-hearts.
IntroductionVascularized composite allotransplantation (VCA), with nerve repair/coaptation (NR) and tacrolimus (TAC) immunosuppressive therapy, is used to repair devastating traumatic injuries but is often complicated by inflammation spanning multiple tissues. We identified the parallel upregulation of transcriptional pathways involving chemokine signaling, T-cell receptor signaling, Th17, Th1, and Th2 pathways in skin and nerve tissue in complete VCA rejection compared to baseline in 7 human hand transplants and defined increasing complexity of protein-level dynamic networks involving chemokine, Th1, and Th17 pathways as a function of rejection severity in 5 of these patients. We next hypothesized that neural mechanisms may regulate the complex spatiotemporal evolution of rejection-associated inflammation post-VCA.MethodsFor mechanistic and ethical reasons, protein-level inflammatory mediators in tissues from Lewis rats (8 per group) receiving either syngeneic (Lewis) or allogeneic (Brown-Norway) orthotopic hind limb transplants in combination with TAC, with and without sciatic NR, were compared to human hand transplant samples using computational methods.ResultsIn cross-correlation analyses of these mediators, VCA tissues from human hand transplants (which included NR) were most similar to those from rats undergoing VCA + NR. Based on dynamic hypergraph analyses, NR following either syngeneic or allogeneic transplantation in rats was associated with greater trans-compartmental localization of early inflammatory mediators vs. no-NR, and impaired downregulation of mediators including IL-17A at later times.DiscussionThus, NR, while considered necessary for restoring graft function, may also result in dysregulated and mis-compartmentalized inflammation post-VCA and therefore necessitate mitigation strategies. Our novel computational pipeline may also yield translational, spatiotemporal insights in other contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.