"Economy" is referred to as the thrifty and efficient use of material resources, as the principle of "minimum effort to reach a goal." More illuminating is: "the aim to portion one's forces in order to use as little as possible of them to reach a goal." Such statements certainly apply when the goal is to synthesize a complex target molecule. Redox economy then implies the use of as few redox steps as possible in the synthetic conquest of a target compound. While any sort of economy will help to streamline the effort of total synthesis, redox economy addresses a particularly weak area in present-day total synthesis. It is not enough to point out the present deficiencies, rather the purpose of this Review is to serve as a teaching tool for all practitioners of the field by giving and illustrating guidelines to increase redox economy in multistep organic synthesis.
Biological systems sense and respond to mechanical stimuli in a complex manner. In an effort to develop synthetic materials that transduce mechanical force into multifold changes in their intrinsic properties, we report on a mechanochemically responsive nonconjugated polymer that converts to a conjugated polymer via an extensive rearrangement of the macromolecular structure in response to force. Our design is based on the facile mechanochemical unzipping of polyladderene, a polymer inspired by a lipid natural product structure and prepared via direct metathesis polymerization. The resultant polyacetylene block copolymers exhibit long conjugation length and uniform trans-configuration and self-assemble into semiconducting nanowires. Calculations support a tandem unzipping mechanism of the ladderene units.
Ladderane lipids produced by anammox bacteria constitute some of the most structurally fascinating yet poorly studied molecules among biological membrane lipids. Slow growth of the producing organism and the inherent difficulty of purifying complex lipid mixtures have prohibited isolation of useful amounts of natural ladderane lipids. We have devised a highly selective total synthesis of ladderane lipid tails and a full phosphatidylcholine to enable biophysical studies on chemically homogeneous samples of these molecules. Additionally, we report the first proof of absolute configuration of a natural ladderane.
Anregungen für die organische Synthese: Stufen‐ und Atomökonomie haben sich als nützliche Kriterien erwiesen, an denen sich die Effizienz einer Synthese festmachen lässt. Dieser Aufsatz weist auf eine weitere Form der Ökonomie hin, die bei der Planung und Bewertung einer mehrstufigen Synthese berücksichtigt werden sollte: die Redoxökonomie. Etliche Beispiele und Leitfäden werden vorgestellt, die das Konzept illustrieren und Anregungen für die Syntheseplanung geben. “Ökonomie” bezeichnet den sparsamen und effizienten Umgang mit materiellen Ressourcen, das Prinzip, sein Ziel mit einem minimalen Aufwand zu erreichen. Vielleicht noch treffender: “Seine Kräfte so einzuteilen, um möglichst wenig davon zur Erreichung eines Ziels zu verbrauchen”. Diese Aussagen treffen sicher auch zu, wenn es darum geht, ein komplexes Zielmolekül zu synthetisieren. Redoxökonomie bedeutet dann, so wenig wie möglich Redoxschritte in der Synthese eines Zielmoleküls einzusetzen. Während jede Art von Ökonomie hilft, den Aufwand einer Totalsynthese in Grenzen zu halten, betrifft Redoxökonomie einen besonderen Schwachpunkt heutiger Totalsynthesen. Es genügt nicht, auf dieses Defizit zu verweisen, vielmehr soll dieser Aufsatz allen mit Totalsynthese Befassten einen Leitfaden geben und Hinweise beisteuern, wie sich die Redoxökonomie in mehrstufigen Synthesefolgen der organischen Chemie verbessern lässt.
The first total synthesis of the highly complex and potent anticancer agent haouamine A is reported through an eight-step sequence. Brevity of the sequence and complete control of chemo-, position-, and stereoselectivity (both planar and axial chirality) were possible through the invention of chemistry specifically tailored for the problems at hand, namely a cascade annulation proceeding via a hitherto unknown chemical entity for the indeno-tetrahydropyridine ring system as well as a pyrone-assisted stitching of the daunting bent-aromatic ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.