Adsorption of PHB depolymerase from Ralstonia pickettii T1 to biodegradable polyesters such as poly[(R)-3-hydroxybutyrate] (PHB) and poly(l-lactic acid) (PLLA) was investigated by atomic force microscopy (AFM). The substrate-binding domain (SBD) with histidines within the N-terminus was prepared and immobilized on the AFM tip surface via a self-assembled monolayer with a nitrilotriacetic acid group. Using the functionalized AFM tips, the force-distance measurements for polyesters were carried out at room temperature in a buffer solution. In the case of AFM tips with immobilized SBD and their interaction with polyesters, multiple pull-off events were frequently recognized in the retraction curves. The single rupture force was estimated at approximately 100 pN for both PLLA and PHB. The multiple pull-off events were recognized even in the presence of a surfactant, which will prevent nonspecific interactions, but reduced when using polyethylene instead of polyesters as a substrate. The present results provide that the PHB depolymerase adsorbs specifically to the surfaces of polyesters and that the single unbinding event evaluated here is mainly associated with the interaction between one molecule of SBD and the polymer surface.
Extracelluar Poly[(R)-3-hydroxybutyrate] (PHB) depolymerase (PhaZ(RpiT1)) from Ralstonia pickettii T1 adsorbs to PHB surface via its substrate-binding domain (SBD) to enhance PHB degradation. Our previous study combining PCR random mutagenesis with the determination of PHB degradation levels of mutant enzymes suggested that Ser, Tyr, Val, Ala, and Leu residues in SBD are probably involved in the enzymatic adsorption to and degradation of PHB. In the present study, the effects of mutations at Leu441, Tyr443, and Ser445 on PHB degradation were investigated because these residues were predicted to form a beta-sheet structure and orient in the same direction to interact possibly directly with the PHB surface. Purified L441H, Y443H, and S445C mutant enzymes were prepared, and their CD spectra and hydrolytic activities for water-soluble substrates were found to be identical to those of wild-type enzyme, indicating that these mutations have no influence on their structures and their ability to cleave the ester bond. In contrast, the PHB-degrading activity of these mutants differed from that of the wild type: L441H and Y443H enzymes had lower PHB-degrading activity than their wild-type counterpart, whereas S445C had higher activity. Kinetic analysis of PHB degradation by the mutants suggested that the hydrophobic residues at these positions are important for the enzyme adsorption to the PHB surface, and such substitutions as Y443H and S445C may more effectively disrupt the PHB surface to enhance the hydrolysis of PHB polymer chains than the wild-type enzyme. Surface plasmon resonance (SPR) analysis revealed that the three substitutions mentioned above altered the association phase rather than the dissociation phase in the enzyme adsorption to the polymer surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.