and 2 RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo, Japan V-type ATPases (V-ATPases) are categorized as rotary ATP synthase/ATPase complexes. The V-ATPases are distinct from F-ATPases in terms of their rotation scheme, architecture and subunit composition. However, there is no detailed structural information on V-ATPases despite the abundant biochemical and biophysical research. Here, we report a crystallographic study of V 1 -ATPase, from Thermus thermophilus, which is a soluble component consisting of A, B, D and F subunits. The structure at 4.5 Å resolution reveals inter-subunit interactions and nucleotide binding. In particular, the structure of the central stalk composed of D and F subunits was shown to be characteristic of V 1 -ATPases. Small conformational changes of respective subunits and significant rearrangement of the quaternary structure observed in the three AB pairs were related to the interaction with the straight central stalk. The rotation mechanism is discussed based on a structural comparison between V 1 -ATPases and F 1 -ATPases.
A cutinase-type polyesterase from Saccharomonospora viridis AHK190 (Cut190) has been shown to degrade the inner block of polyethylene terephthalate. A unique feature of Cut190 is that its function and stability are regulated by Ca binding. Our previous crystal structure analysis of Cut190S226P showed that one Ca binds to the enzyme, which induces large conformational changes in several loop regions to stabilize an open conformation [Miyakawa, T., et al. (2015) Appl. Microbiol. Biotechnol. 99, 4297]. In this study, to analyze the substrate recognition mechanism of Cut190, we determined the crystal structure of the inactive form of a Cut190 mutant, Cut190*S176A, in complex with calcium ions and/or substrates. We found that three calcium ions bind to Cut190*S176A, which is supported by analysis using native mass spectrometry experiments and 3D Reference Interaction Site Model calculations. The complex structures with the two substrates, monoethyl succinate and monoethyl adipate (engaged and open forms), presumably correspond to the pre- and post-reaction states, as the ester bond is close to the active site and pointing outward from the active site, respectively, for the two complexes. Ca binding induces the pocket to open, enabling the substrate to access the pocket more easily. Molecular dynamics simulations suggest that a post-reaction state in the engaged form presumably exists between the experimentally observed forms, indicating that the substrate would be cleaved in the engaged form and then requires the enzyme to change to the open form to release the product, a process that Ca can greatly accelerate.
Akatsu and colleagues show that CD72 specifically recognizes Sm/RNP, a lupus-related self-antigen and an endogenous TLR7 ligand, and inhibits B cell responses to Sm/RNP. In mice, CD72 prevents production of anti-Sm/RNP antibodies crucial for lupus development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.