Instabilities of hurricane-like vortices are studied with the help of a rotating shallow-water model, including the effects of moist convection. Linear stability analysis demonstrates that dominant unstable modes are mixed Rossby–inertia–gravity waves. It is shown that, depending on fine details of the vorticity profile, a wavenumber selection of the instability may operate or not, leading in some cases to an unstable mode with a distinctively maximal growth rate and in other cases to an ensemble of unstable modes with close growth rates. Numerical simulations are performed in order to investigate nonlinear saturation of the instability and to understand the dynamical role of moisture. In agreement with previous studies, the authors confirm axisymmetrization of vorticity in the course of the development of the instability, which induces changes of intensity of the hurricane. In “dry” simulations, winds are intensified only inside the radius of maximum wind, while the maximum value of the wind decreases. “Moist precipitating” simulations (with and without evaporation) exhibit a net increase of winds, also at the radius of maximum wind, as compared to the dry simulations. Dynamical effects of moisture on the reorganization of the vortex and on the efficiency of inertia–gravity wave emission are quantified and shown to be considerable. Periodic bursts in the emission of waves related to the development of the unstable modes inside the vortex are evidenced, as well as the appearance of convectively coupled waves in the moist precipitating simulations with evaporation.
Instabilities of isolated anticyclonic vortices in the two-layer rotating shallow water model are studied at Rossby numbers up to two, with the main goal to understand the interplay between the classical centrifugal instability and other ageostrophic instabilities. We find that different types of instabilities with low azimuthal wavenumbers exist, and may compete. In a wide range of parameters, an asymmetric version of the standard centrifugal instability has larger growth rate than the latter. The dependence of the instabilities on the parameters of the flow, i.e. Rossby and Burger numbers, vertical shear and the ratios of the layers' thicknesses and densities, is investigated. The zones of dominance of each instability are determined in the parameter space. Nonlinear saturation of these instabilities is then studied with the help of a high-resolution finite-volume numerical scheme, by using the unstable modes identified from the linear stability analysis as initial conditions. Differences in nonlinear development of the competing centrifugal and ageostrophic barotropic instabilities are evidenced. A nonlinear mechanism of axial symmetry breaking during the saturation of the centrifugal instability is displayed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.