Abstract. This article discusses the classification in predicting the sustainability status of the health insurance customer policy of PT. X uses the Naïve Bayes Classifier Algorithm. In predicting the Naive Bayes Classifier Algorithm, it uses the concepts and theories of data mining in the literature related to insurance by calculating the probability of each class of variables using the Bayes theorem in describing the performance of a model or algorithm specifically using the Confusion Matrix. To be able to predict the decisions of health insurance customers in the policy sustainability status, a method of data analysis of registered insurance customers is needed. The data used is data obtained from the insurance company PT. X. The data contains customer information data in the form of 9 variables (Policy Number, Smoking Status, Gender, Age, Marital Status, Dependents, Monthly Premiums, Current Status / whether or not premium payments and insurance policy renewal status). The results of the application of the Naïve Bayes Classifier Algorithm show that the algorithm is quite good in predicting the status of the policy extension of the insured health insurance PT. X, with an average accuracy of 85.82%, an average precision of 96.10% and an average recall of 93.55. Abstrak. Artikel ini membahas tentang klasifikasi dalam memprediksi status keberlanjutan polis nasabah asuransi kesehatan PT. X menggunakan Algoritma Nave Bayes Classifier. Dalam memprediksi Algoritma Naive Bayes Classifier menggunakan konsep dan teori data mining dalam literatur yang berhubungan dengan asuransi dengan menghitung probabilitas setiap kelas variabel menggunakan teorema Bayes dalam menggambarkan kinerja suatu model atau algoritma secara khusus menggunakan Confusion Matrix . Untuk dapat memprediksi keputusan nasabah asuransi kesehatan dalam status kesinambungan polis, diperlukan suatu metode analisis data nasabah asuransi yang terdaftar. Data yang digunakan adalah data yang diperoleh dari perusahaan asuransi PT. X. Data tersebut berisi data informasi nasabah berupa 9 variabel (Nomor Polis, Status Merokok, Jenis Kelamin, Usia, Status Perkawinan, Tanggungan, Premi Bulanan, Status Lancar/tidaknya pembayaran premi dan status perpanjangan polis asuransi). Hasil penerapan Algoritma Naïve Bayes Classifier menunjukkan bahwa algoritma tersebut cukup baik dalam memprediksi status perpanjangan polis dari tertanggung asuransi kesehatan PT. X, dengan rata-rata akurasi 85,82%, presisi rata-rata 96,10% dan rata-rata recall 93,55.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.