Like many other countries, the United Kingdom (UK) produces a national consumer price index (CPI) to measure inflation. Presently, CPI measures are not produced for regions within the UK. It is believed that, using only available data sources, a regional CPI would not be precise or reliable enough as an official statistic, primarily because the regional partitioning of the data makes sample sizes too small. We investigate this claim by producing experimental regional CPIs using publicly available price data, and deriving expenditure weights from the Living Costs and Food survey. We detail the methods and challenges of developing a regional CPI and evaluate its reliability. We then assess whether model-based methods such as smoothing and small area estimation significantly improve the measures. We find that a regional CPI can be produced with available data sources, however it appears to be excessively volatile over time, mainly due to the weights. Smoothing and small area estimation improve the reliability of the regional CPI series to some extent but they remain too volatile for regional policy use. This research provides a valuable framework for the development of a more viable regional CPI measure for the UK in the future.
Reliable estimators of the spatial distribution of socio-economic indicators are essential for evidence-based policy-making. As sample sizes are small for highly disaggregated domains, the accuracy of the direct estimates is reduced. To overcome this problem small area estimation approaches are promising. In this work we propose a small area methodology using machine learning methods. The semiparametric framework of mixed effects random forest combines the advantages of random forests (robustness against outliers and implicit model-selection) with the ability to model hierarchical dependencies. Existing random forest-based methods require access to auxiliary information on population-level. We present a methodology that deals with the lack of population micro-data. Our strategy adaptively incorporates aggregated auxiliary information through calibration-weights -based on empirical likelihood -for the estimation of area-level means. In addition to our point estimator, we provide a non-parametric bootstrap estimator measuring its uncertainty. The performance of the proposed point estimator and its uncertainty measure is studied in model-based simulations. Finally, the proposed methodology is applied to the 2011 Socio-Economic Panel and aggregate census information from the same year to estimate the average opportunity cost of care work for 96 regional planning regions in Germany.
Spatially disaggregated income indicators are typically estimated by using model-based methods that assume access to auxiliary information from population micro-data. In many countries like Germany and the UK population micro-data are not publicly available. In this work we propose small area methodology when only aggregate population-level auxiliary information is available. We use data-driven transformations of the response to satisfy the parametric assumptions of the used models. In the absence of population micro-data, appropriate bias-corrections for small area prediction are needed. Under the approach we propose in this paper, aggregate statistics (means and covariances) and kernel density estimation are used to resolve the issue of not having access to population microdata. We further explore the estimation of the mean squared error using the parametric bootstrap. Extensive model-based and design-based simulations are used to compare the proposed method to alternative methods. Finally, the proposed methodology is applied to the 2011 Socio-Economic Panel and aggregate census information from the same year to estimate the average income for 96 regional planning regions in Germany.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.