The self-diffusion coefficients (D) of the cation and anion in the ionic liquids 1-hexyl-3-methylimidazolium and 1-octyl-3-methylimidazolium hexafluorophosphates ([HMIM]PF6 and [OMIM]PF6) and 1-butyl-3-methylimidazolium and 1-octyl-3-methylimidazolium tetrafluoroborates ([BMIM]BF4) and ([OMIM]BF4) have been determined together with the electrical conductivities (kappa) of [HMIM]PF6 and [BMIM]BF4 under high pressure. The pressure effect on the transport coefficients is discussed in terms of velocity cross-correlation coefficients (VCCs or fij), the Nernst-Einstein equation (ionic diffusivity-conductivity), and the fractional form of the Stokes-Einstein relation (viscosity-conductivity and viscosity-diffusivity). The (mass-fixed frame of reference) VCCs for the cation-cation, anion-anion, and cation-anion pairs are all negative and strongly pressure dependent, increasing (becoming less negative) with increasing pressure. VCCs are the more positive for the stronger ion-velocity correlations; therefore, f+ - is least negative in each case. In general, f- - is less negative than f+ +, indicating a smaller correlation of velocities of distinct cations than that for distinct anions. However, for [OMIM]PF6, the like-ion fii are very similar to one another. Plots of the VCCs for a given ion-ion correlation against fluidity (reciprocal viscosity) show the fij to be strongly correlated with the viscosity as either temperature or pressure are varied, that is, fij approximately fij(eta). The Nernst-Einstein deviation parameter, Delta, is nearly constant for each salt under the conditions examined. It is emphasized that nonzero values of Delta are not necessarily due to ion pairing but result from differences between the like-ion and unlike-ion VCCs, because Delta is proportional to (f+ + + f- - - 2 f+ -). The diffusion and molar conductivity (Lambda) data are found to fit fractional forms of the Stokes-Einstein relationship, (LambdaT) proportional, variant (T/eta)(t) and Di proportional, variant (T/eta)(t), with t=(0.90+/-0.05) for all these ionic liquids, independent of both temperature and pressure within the ranges studied.
The self-diffusion coefficients (D) of the cation and anion in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) have been determined together with the electrical conductivity (kappa) under high pressure. All three quantities strongly decrease with increasing pressure to approximately 20% of their atmospheric pressure values at 200 MPa. D(PF6-) is always less than D([BMIM]+), despite the larger van der Waals volume of the cation. The pressure effect on the transport coefficients is discussed in terms of velocity correlation coefficients (VCCs or fij), the Nernst-Einstein equation (ionic diffusivity-conductivity), and the fractional form of the Stokes-Einstein relation (viscosity-conductivity and viscosity-diffusivity). It was found that the VCCs for the cation-cation, anion-anion, and cation-anion pairs are all negative and strongly pressure-dependent, increasing (becoming less negative) with increasing pressure. However, when the values of the VCCs for a given isotherm are normalized relative to the corresponding atmospheric pressure values, they collapse onto a single curve, as might be expected because the pressure should affect the interionic velocity correlations in the same way for each type of interaction. These isothermal curves can be represented by the form exp(alphap + betap2). The Nernst-Einstein deviation parameter, Delta, which depends on the differences between the like-like ion and unlike ion VCCs (f++ + f-- - 2f+-), is very nearly constant under the conditions examined. The diffusion and molar conductivity (Lambda) data are found to fit fractional forms of the Stokes-Einstein relationship with the viscosity, (LambdaT) proportional, variant (T/eta)t and Di proportional, variant (T/eta)t , with t = (0.92 +/- 0.05), independent of both temperature and pressure within the ranges studied and common to the three independently determined properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.