<span>Envisaging legal cases’ outcomes can assist the judicial decision-making process. Prediction is possible in various cases, such as predicting the outcome of construction litigation, crime-related cases, parental rights, worker types, divorces, and tax law. The machine learning methods can function as support decision tools in the legal system with artificial intelligence’s advancement. This study aimed to impart a systematic literature review (SLR) of studies concerning the prediction of court decisions via machine learning methods. The review determines and analyses the machine learning methods used in predicting court decisions. This review utilised RepOrting Standards for Systematic Evidence Syntheses (ROSES) publication standard. Subsequently, 22 relevant studies that most commonly predicted the judgement results involving binary classification were chosen from significant databases: Scopus and Web of Sciences. According to the SLR’s outcomes, various machine learning methods can be used in predicting court decisions. Additionally, the performance is acceptable since most methods achieved more than 70% accuracy. Nevertheless, improvements can be made on the types of judicial decisions predicted using the existing machine learning methods.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.