BackgroundThe use of honey as a natural product of Apis spp. for burn treatment has been widely applied for centuries. Tualang honey has been reported to have antibacterial properties against various microorganisms, including those from burn-related diagnoses, and is cheaper and easier to be absorbed by Aquacel dressing. The aim of this study is to evaluate the potential antibacterial properties of tualang honey dressing and to determine its effectiveness as a partial thickness burn wound dressing.MethodsIn order to quantitate the bioburden of the swabs, pour plates were performed to obtain the colony count (CFU/ml). Swabs obtained from burn wounds were streaked on blood agar and MacConkey agar for bacterial isolation and identification. Later, antibacterial activity of Aquacel-tualang honey, Aquacel-Manuka honey, Aquacel-Ag and Aquacel- plain dressings against bacteria isolated from patients were tested (in-vitro) to see the effectiveness of those dressings by zone of inhibition assays.ResultsSeven organisms were isolated. Four types of Gram-negative bacteria, namely Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas spp. and Acinetobacter spp., and three Gram-positive bacteria, namely Staphylococcus aureus, coagulase-negative Staphylococcus aureus (CONS) and Streptococcus spp., were isolated. Total bacterial count decreased on day 6 and onwards. In the in-vitro antibacterial study, Aquacel-Ag and Aquacel-Manuka honey dressings gave better zone of inhibition for Gram positive bacteria compared to Aquacel-Tualang honey dressing. However, comparable results were obtained against Gram negative bacteria tested with Aquacel-Manuka honey and Aquacel-Tualang honey dressing.ConclusionsTualang honey has a bactericidal as well as bacteriostatic effect. It is useful as a dressing, as it is easier to apply and is less sticky compared to Manuka honey. However, for Gram positive bacteria, tualang honey is not as effective as usual care products such as silver-based dressing or medical grade honey dressing.
Biopolymers have been used as a replacement material for synthetic polymers in scaffold forming due to its biocompatibility and nontoxic properties. Production of scaffold for tissue repair is a major part of tissue engineering. Tissue engineering techniques for scaffold forming with cellulose-based material is at the forefront of present-day research. Micro- and nanocellulose-based materials are at the forefront of scientific development in the areas of biomedical engineering. Cellulose in scaffold forming has attracted a lot of attention because of its availability and toxicity properties. The discovery of nanocellulose has further improved the usability of cellulose as a reinforcement in biopolymers intended for scaffold fabrication. Its unique physical, chemical, mechanical, and biological properties offer some important advantages over synthetic polymer materials. This review presents a critical overview of micro- and nanoscale cellulose-based materials used for scaffold preparation. It also analyses the relationship between the method of fabrication and properties of the fabricated scaffold. The review concludes with future potential research on cellulose micro- and nano-based scaffolds. The review provides an up-to-date summary of the status and future prospective applications of micro- and nanocellulose-based scaffolds for tissue engineering.
Objectives Chitosan, the N-deacetylated derivative of chitin, has useful biological properties that promote haemostasis, analgesia, wound healing, and scar reduction; chitosan is bacteriostatic, biocompatible, and biodegradable. This study determined the efficacy of chitosan derivative film as a superficial wound dressing. Methods This multicentre randomised controlled trial included 244 patients, of whom 86 were treated with chitosan derivative film and 84 with hydrocolloid. The percentage of epithelisation, as well as patient comfort, clinical signs, and patient convenience in application and removal of the dressings were assessed. Results The primary outcome of this study was the percentage of epithelisation. Except for race ( p = 0.04), there were no significant differences between groups in sex, age, antibiotic usage, or initial wound size ( p > 0.05). There was no significant difference in the mean epithelisation percentage between groups ( p = 0.29). Patients using chitosan derivative film experienced more pain during removal of dressing than those in the hydrocolloid group ( p = 0.007). The chitosan derivative film group showed less exudate ( p = 0.036) and less odour ( p = 0.024) than the control group. Furthermore, there were no significant differences between groups in terms of adherence, ease of removal, wound drainage, erythema, itchiness, pain, and tenderness. No oedema or localised warmth was observed during the study. Conclusion This study concluded that chitosan derivative film is equivalent to hydrocolloid dressing and can be an option in the management of superficial and abrasion wounds. Clinical trial No. NMRR-11-948-10565.
Ex vivo wounded human skin organ culture is an invaluable tool for translationally relevant preclinical wound healing research. However, studies incorporating this system are still underutilized within the field because of the low throughput of histological analysis required for downstream assessment. In this study, we use intravital fluorescent dye to lineage trace epidermal cells, demonstrating that wound re‐epithelialization of human ex vivo wounds occurs consistent with an extending shield mechanism of collective migration. Moreover, we also report a relatively simple method to investigate global epithelial closure of explants in culture using daily fluorescent dye treatment and en face imaging. This study is the first to quantify healing of ex vivo wounds in a longitudinal manner, providing global assessments for re‐epithelialization and tissue contraction. We show that this approach can identify alterations to healing with a known healing promoter. This methodological study highlights the utility of human ex vivo wounds in enhancing our understanding of mechanisms of human skin repair and in evaluating novel therapies to improve healing outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.