The specific interaction of a variety of modified hevein domains to chitooligosaccharides has been studied by NMR spectroscopy in order to assess the importance of aromatic-carbohydrate interactions for the molecular recognition of neutral sugars. These mutant AcAMP2-like peptides, which have 4-fluoro-phenylalanine, tryptophan, or 2-naphthylalanine at the key interacting positions, have been prepared by solid-phase synthesis. Their three-dimensional structures, when bound to the chitin-derived trisaccharide, have been deduced by NMR spectroscopy. By using DYANA and restrained molecular dynamics simulations with the AMBER 5.0 force field, the three-dimensional structures of the protein-sugar complexes have been obtained. The thermodynamic analysis of the interactions that occur upon complex formation have also been carried out. Regarding binding affinity, the obtained data have permitted the deduction that the larger the aromatic group, the higher the association constant and the binding enthalpy. In all cases, entropy opposes binding. In contrast, deactivation of the aromatic rings by attaching fluorine atoms decreases the binding affinity, with a concomitant decrease in enthalpy. The role of the chemical nature of the aromatic ring for establishing sugar contacts has been thus evaluated.
HEV32, a 32-residue, truncated hevein lacking eleven C-terminal amino acids, was synthesized by solid-phase methodology and correctly folded with three cysteine bridge pairs. The affinities of HEV32 for small chitin fragments--in the forms of N,N',N"-triacetylchitotriose ((GlcNAc)3) (millimolar) and N,N',N",N"',N"",N""'-hexaacetylchitohexaose ((GlcNAc)6) (micromolar)--as measured by NMR and fluorescence methods, are comparable with those of native hevein. The HEV32 ligand-binding process is enthalpy driven, while entropy opposes binding. The NMR structure of ligand-bound HEV32 in aqueous solution was determined to be highly similar to the NMR structure of ligand-bound hevein. Solvated molecular-dynamics simulations were performed in order to monitor the changes in side-chain conformation of the binding site of HEV32 and hevein upon interaction with ligands. The calculations suggest that the Trp21 side-chain orientation of HEV32 in the free form differs from that in the bound state; this agrees with fluorescence and thermodynamic data. HEV32 provides a simple molecular model for studying protein-carbohydrate interactions and for understanding the physiological relevance of small native hevein domains lacking C-terminal residues.
Hevein, a protein found in Hevea brasiliensis, has a CRD domain, which is known to bind chitin and GlcNAc-containing oligosaccharides. By using NMR and molecular modeling as major tools we have demonstrated that trisaccharides containing GalNAc and ManNAc residues are also recognized by hevein domains. Thus far unknown trisaccharides GlcNAcbeta(1-->4)GlcNAcbeta(1-->4)ManNAc (1) and GalNAcbeta(1-->4)GlcNAcbeta(1-->4)ManNAc (2) were synthesized with the use of beta-N-acetylhexosaminidase from Aspergillus oryzae. This method is based on the rather unique phenomenon that some fungal beta-N-acetylhexosaminidases cannot hydrolyze disaccharide GlcNAcbeta(1-->4)ManNAc (5) contrary to chitobiose GlcNAcbeta(1-->4)GlcNAc (4) that is cleaved and, therefore, cannot be used as an acceptor for further transglycosylation. Both trisaccharides 1 and 2 were prepared by transglycosylation from disaccharidic acceptor in good yields ranging from 35% to 40%. Our observations strongly indicate that the present nature of the modifications of chitotriose (GlcNAcbeta(1-->lcNAcbeta(1-->4)GlcNAc, 3) at either the non-reducing end (GalNAc instead of GlcNAc) or at the reducing end (ManNAc instead of GlcNAc) do not modify the mode of binding of the trisaccharide to hevein. The association constant values indicate that chitotriose (3) binding is better than that of 1 and 2, and that the binding of (with ManNAc at the reducing end) is favored with respect to that of 2 (with ManNAc at the reducing end with a non-reducing GalNAc moiety).
A technique, based on 1 H NMR and IR experiments, to characterise intramolecular hydrogen bonds in aqueous medium in a series of amino, amido and ammonium sugar derivatives has been established. Three groups of molecules, representing amides (4, 5 and 6), amines (7 and 8) and ammonium salts (chlorides 9 and 10, and phosphates 11 and 12), with different relative configurations of their functional groups, have been investigated to assess the effect of the nature and the stereochemistry of these groups on the hydrogen-bonding features of the sugar. The deduced features in water solution are compared to those obtained previously in nonpolar solvents. The phosphate salts of amines 7 and 8 (11 and 12)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.