Introduction
Stem cells mediate cyclic regeneration of the endometrium. The upregulated expression of receptors and modulators of the notch signaling pathway in endometriosis suggests an involvement in the pathogenetic process. Here, we investigated the effects of notch pathway inhibition by a γ‐secretase inhibitor (GSI) on stemness‐associated properties of the epithelial endometriotic cell line 12Z and of primary endometriotic stroma cells.
Material and methods
12Z cells and primary endometriotic stroma cells of 7 patients were treated with or without GSI, and analyzed for changes in gene expression by TaqMan low‐density arrays, quantitative PCR, and flow cytometry. The functional impact of GSI treatment was studied by MTT assay, cell cycle analysis, colony formation assay, annexin V apoptosis assay, and aldehyde dehydrogenase activity assays.
Results
In 12Z cells, GSI treatment reduced aldehyde dehydrogenase activity and colony formation, and induced a shift to the G2/M phase of the cell cycle. Cell viability was decreased and apoptosis was increased in both cell models. GSI further induced transcriptional downregulation of the stemness‐associated factors leukemia inhibitory factor receptor (LIFR), sex‐determining region Y (SRY)‐ box 2, interferon‐induced transmembrane protein 1, and hes‐related family bHLH transcription factor with YRPW motif 1, in 12Z cells and in primary cell cultures. Downregulation of LIFR expression by GSI was confirmed at the protein level by flow cytometry.
Conclusions
Our in vitro data suggest that application of GSI may be a worthwhile approach in the treatment of endometriosis that warrants further investigation.
The stem cell marker and RNA-binding protein Musashi-1 is overexpressed in endometriosis. Musashi-1-siRNA knockdown in Ishikawa cells altered the expression of stem cell related genes, such as OCT-4. To investigate the role of both human Musashi homologues (MSI-1 and MSI-2) in the pathogenesis of endometriosis, immortalized endometriotic 12-Z cells and primary endometriotic stroma cells were treated with Musashi-1- and Musashi-2-siRNA. Subsequently, the impact on cell proliferation, cell apoptosis, cell necrosis, spheroid formation, stem cell phenotype and the Notch signaling pathway was studied in vitro. Using the ENDOMET Turku Endometriosis database, the gene expression of stem cell markers and Notch signaling pathway constituents were analyzed according to localization of the endometriosis lesions. The database analysis demonstrated that expression of Musashi and Notch pathway-related genes are dysregulated in patients with endometriosis. Musashi-1/2-double-knockdown increased apoptosis and necrosis and reduced stem cell gene expression, cell proliferation, and the formation of spheroids. Musashi silencing increased the expression of the anti-proliferation mediator p21. Our findings suggest the therapeutic potential of targeting the Musashi–Notch axis. We conclude that the Musashi genes have an impact on Notch signaling and the pathogenesis of endometriosis through the downregulation of proliferation, stemness characteristics and the upregulation of apoptosis, necrosis and of the cell cycle regulator p21.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.