Motivation
The wealth of data resources on human phenotypes, risk factors, molecular traits and therapeutic interventions presents new opportunities for population health sciences. These opportunities are paralleled by a growing need for data integration, curation and mining to increase research efficiency, reduce mis-inference and ensure reproducible research.
Results
We developed EpiGraphDB (https://epigraphdb.org/), a graph database containing an array of different biomedical and epidemiological relationships and an analytical platform to support their use in human population health data science. In addition, we present three case studies that illustrate the value of this platform. The first uses EpiGraphDB to evaluate potential pleiotropic relationships, addressing mis-inference in systematic causal analysis. In the second case study, we illustrate how protein–protein interaction data offer opportunities to identify new drug targets. The final case study integrates causal inference using Mendelian randomization with relationships mined from the biomedical literature to ‘triangulate’ evidence from different sources.
Availability and implementation
The EpiGraphDB platform is openly available at https://epigraphdb.org. Code for replicating case study results is available at https://github.com/MRCIEU/epigraphdb as Jupyter notebooks using the API, and https://mrcieu.github.io/epigraphdb-r using the R package.
Supplementary information
Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.