The constant scheduled load shedding in South Africa has commonly been executed in an attempt to maintain the long aging coal power plants in the country. With the rise in the reduction of fossil fuels, efforts to eradicate environmental hazards of carbon through solar photovoltaic (PV) resources to their complete prospect are in progress. South Africa, and in particular the town Alice, acquires sunshine annually, making it appropriate to harvest solar energy. This work aims to characterize solar radiation, clearness index (Kt), and diffuse fraction (Kd) in Alice, South Africa. Hourly global and diffuse solar irradiance were estimated into monthly, seasonal, and yearly variations of Kt and Kd for the years 2017–2020. The range of values for describing the daily classification of sky condition was centered on earlier studies. The cumulative frequency and frequency distribution of daily Kt was analyzed statistically in an individual month. The analyses show that the average percentage frequency of Kt within the period is 11.72% of the cloudy days, 57% of partially cloudy days, and 31.28% of clear sky days. The findings of this research show that Alice remains a key contender for solar energy conversion location, owing to its reasonably high frequency (Kt > 0.40) of clear and partially cloudy skies. Hence, it is essential to establish energy-efficiency for energy consumption and also for daily performances.
A passive solar house was constructed in Alice, South Africa as a prototype for low-cost energy-efficient housing. Minimum air exchange rate was adopted to minimise heat transfer between the inner and ambient environment of the house. The aim of this study is to investigate the air exchange rate and sensible air heat transfer in a passive solar house. The tracer gas technique was used where CO2 was consecutively injected into the various zones of the house. The CO2 concentration was measured using a Non-Dispersion Infrared gas sensor, and the air change rate (ACH) in each zone was evaluated via the CO2 decay rate. Auxiliary parameters were also monitored, such as indoor air temperature, ambient air temperature, wind speed and direction. Zone 1 had the maximum ACH of 2.27 h−1 with all ventilation components open. The corresponding sensible air heat transfer was 275.59 W. With all ventilation components closed, the whole house’s ACH was found to be within the recommended domestic level. The windows were also found to have a significant impact on the ACH, resulting in a daily cumulative heat loss of 0.196 kWh/m2. Hence, proper operation of windows is recommended to minimise indoor thermal load without compromising comfort.
Solar radiation provides the most significant natural energy in buildings for space heating and daylighting. Due to atmospheric interference, solar radiation received at the Earth’s surface consists of direct beam and diffuse radiation, where diffuse can be further broken down into longwave and visible radiation. Although each of these components co-occurs, their influence on the indoor visual and thermal conditions of a building differ. This study aims to analyze the influence of the various components of solar radiation on the indoor thermal and daylighting of a passive solar building. Thus, a pyrheliometer, pyranometer, shaded-pyranometer, and pyrgeometer mounted on a SOLYS 2 (Kipp & Zonen, Delft, Netherlands) dual Axis sun tracker, were used to monitor direct, global horizontal, diffuse and downward longwave radiation, respectively. The seasonal indoor air temperature and relative humidity were measured using an HMP 60 temperature relative humidity probe. A Li-210R photometric sensor was used to monitor the indoor illuminance. The summer and winter indoor air temperature, as well as relative humidity, were found to be influenced by diffuse horizontal and global horizontal irradiance, respectively. In summer, the indoor air temperature response to diffuse horizontal irradiance was 0.7 °C/ħW/m2 and 1.1 °C/ħW/m2 to global horizontal irradiance in winter, where ħ is 99.9 W/m2. The indoor daylighting which was found to be above the minimum office visual task recommendation in most countries, but within the useful daylight illuminance range was dominated by direct normal irradiance. A response of 260 lux/ħW/m2 was observed. The findings of the study support the strategic locating of the windows in passive solar design. However, the results show that north-facing clerestory windows without shading device could lead to visual discomfort.
This paper centers on the design and installation of a robust photovoltaic (PV)-based microgrid data acquisition system (DAS) that can monitor different PV systems simultaneously. The PV-based microgrid consists of three solar systems: off-grid, hybrid and grid-assisted systems, each with 3.8 kWp located at SolarWatt park, Fort Hare Institute of Technology (FHIT), South Africa. The designed DAS is achieved by assembling and connecting a set of sensors to measure and log electrical and meteorological parameters from each of the three power plants. Meteorological parameters use a CR1000 datalogger while the electrical output parameters use a DT80 data logger. Calibration was done by voltage signal conditioning which helps to reduce errors initiated by analogue signals. The designed DAS mainly assist in assessing the potential of solar energy of the microgrid power plant considering the energy needed in the remote community. Besides, the simultaneous monitoring of the three systems ensures that the outdoor operating conditions are the same while comparing the logged data. A variable day and a week, data were used to verify the reliability of the system. The back of the array temperature was observed to be 42.7 °C when solar irradiance was 1246 W/m2. The ambient temperature and relative humidity were obtained at 21.3 °C and 63.3%, respectively. The PV current in all three systems increases with the solar irradiance and is highest around midday. The results obtained show that the designed DAS is of great interest in PV system developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.