Standard solutions for handling a large amount of measured data obtained from intelligent buildings are currently available as software tools in IoT platforms. These solutions optimize the operational and technical functions managing the quality of the indoor environment and factor in the real needs of residents. The paper examines the possibilities of increasing the accuracy of CO2 predictions in Smart Home Care (SHC) using the IBM SPSS software tools in the IoT to determine the occupancy times of a monitored SHC room. The processed data were compared at daily, weekly and monthly intervals for the spring and autumn periods. The Radial Basis Function (RBF) method was applied to predict CO2 levels from the measured indoor and outdoor temperatures and relative humidity. The most accurately predicted results were obtained from data processed at a daily interval. To increase the accuracy of CO2 predictions, a wavelet transform was applied to remove additive noise from the predicted signal. The prediction accuracy achieved in the selected experiments was greater than 95%.
Many direct and indirect methods, processes, and sensors available on the market today are used to monitor the occupancy of selected Intelligent Building (IB) premises and the living activities of IB residents. By recognizing the occupancy of individual spaces in IB, IB can be optimally automated in conjunction with energy savings. This article proposes a novel method of indirect occupancy monitoring using CO2, temperature, and relative humidity measured by means of standard operating measurements using the KNX (Konnex (standard EN 50090, ISO/IEC 14543)) technology to monitor laboratory room occupancy in an intelligent building within the Internet of Things (IoT). The article further describes the design and creation of a Software (SW) tool for ensuring connectivity of the KNX technology and the IoT IBM Watson platform in real-time for storing and visualization of the values measured using a Message Queuing Telemetry Transport (MQTT) protocol and data storage into a CouchDB type database. As part of the proposed occupancy determination method, the prediction of the course of CO2 concentration from the measured temperature and relative humidity values were performed using mathematical methods of Linear Regression, Neural Networks, and Random Tree (using IBM SPSS Modeler) with an accuracy higher than 90%. To increase the accuracy of the prediction, the application of suppression of additive noise from the CO2 signal predicted by CO2 using the Least mean squares (LMS) algorithm in adaptive filtering (AF) method was used within the newly designed method. In selected experiments, the prediction accuracy with LMS adaptive filtration was better than 95%.
The work investigates the application of artificial neural networks and logistic regression for the recognition of activities performed by room occupants. KNX (Konnex) standard-based devices were selected for smart home automation and data collection. The obtained data from these devices (Humidity, CO2, temperature) were used in combination with two wearable gadgets to classify specific activities performed by the room occupant. The obtained classifications can benefit the occupant by monitoring the wellbeing of elderly residents and providing optimal air quality and temperature by utilizing heating, ventilation, and air conditioning control. The obtained results yield accurate classification.
Wearable devices are commonly used to monitor human movement since motor activity is a fundamental element in all phases of a person's life. Patients with motor disorders need to be monitored for a prolonged period and the battery life can be a limit for such a goal. Here the technique of harvesting energy from body heat to supply energy to wearable devices is investigated. A commercial flexible thermoelectric generator, equipped with an accelerometer, is placed on the lower leg above the ankle. The accelerometer serves to detect diverse motor activities carried out by ten students of VSB-Technical University of Ostrava involved in the execution of two tasks. To summarize, the motor activities analyzed in the proposed work are: "Sit", "Walk", "Rest", "Go biking", "Rest after biking", and "Go down and up the stairs". The maximum measured value of power density was 20.3 µW cm -2 for the "Walk" activity, corresponding to a gradient of temperature between the hot and cold side of the thermocouples constituting the flexible thermoelectric generator of 1.5 °C, while the minimum measured value of power density was 8.3 µW cm -2 for the "Sit" activity, corresponding to a gradient of temperature of 1.1 °C. Moreover, a mathematical model was developed for the recognition of motor activities carried out during the execution of the experiments. As a preliminary result, it is possible to state that semi-stationary parts of the signal generated by the thermoelectric generator can be traced back to the performance of an activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.