A common integration site, cloned from MoMuLV-induced rat T cell lymphomas, was mapped immediately upstream of Not dead yet-1 (Ndy1)/KDM2B, a gene expressed primarily in testis, spleen, and thymus, that is also known as FBXL10 or JHDM1B. Ndy1 encodes a nuclear, chromatin-associated protein that harbors Jumonji C (JmjC), CXXC, PHD, proline-rich, F-box, and leucine-rich repeat domains. Ndy1 and its homolog Ndy2/KDM2A (FBXL11 or JHDM1A), which is also a target of provirus integration in retrovirus-induced lymphomas, encode proteins that were recently shown to possess Jumonji C-dependent histone H3 K36 dimethyldemethylase or histone H3 K4 trimethyl-demethylase activities. Here, we show that mouse embryo fibroblasts engineered to express Ndy1 or Ndy2 undergo immortalization in the absence of replicative senescence via a JmjC domain-dependent process that targets the Rb and p53 pathways. Knockdown of endogenous Ndy1 or expression of JmjC domain mutants of Ndy1 promote senescence, suggesting that Ndy1 is a physiological inhibitor of senescence in dividing cells and that inhibition of senescence depends on histone H3 demethylation.cancer ͉ histone demethylase ͉ immortalization ͉ senescence ͉ insertional mutagenesis
Background & Aims Persistent activation of the inflammatory response contributes to development of inflammatory bowel diseases, which increase the risk of colorectal cancer. We aimed to identify microRNAs that regulate inflammation during development of ulcerative colitis (UC) and progression to colitis-associated colon cancer (CAC). Methods We performed quantititave PCR analysis to measure microRNAs in 401 colon specimens from patients with UC, Crohn's disease, irritable bowel syndrome, sporadic colorectal cancer, or CAC, as well as subjects without these disorders (controls); levels were correlated with clinical features and disease activity of patients. Colitis was induced in mice by administration of dextran sodium sulfate (DSS), and carcinogenesis was induced by addition of azoxymethane; some mice were also given inhibitor of microRNA214 (miR214). Results A high-throughput functional screen of the human microRNAome found that miR214 regulated the activity of nuclear factor κB (NFκB). Higher levels of miR214 were detected in colon tissues from patients with active UC or CAC than patients with other disorders or controls and correlated with disease progression. Bioinformatic and genome-wide profile analyses revealed that miR214 activates an inflammatory response and is amplified through a feedback loop circuit mediated by phosphatase and tensin homolog (PTEN) and PDZ and LIM domain 2 (PDLIM2). Interleukin-6 induced STAT3-mediated transcription of miR214. A miR214 chemical inhibitor blocked this circuit and reduced the severity of DSS-induced colitis in mice, as well as the number and size of tumors that formed in mice given azoxymethane and DSS. In fresh colonic biopsies from patients with active UC, the miR214 inhibitor reduced inflammation by increasing levels of PDLIM2 and PTEN. Conclusions Interleukin-6 upregulates STAT3-mediated transcription of miR214 in colon tissues, which reduces levels of PDLIM2 and PTEN, increases phosphorylation of AKT, and activates NFκB. The activity of this circuit correlates with disease activity in patients with UC and progression to colorectal cancer.
To address the role of Tpl2, a MAP3K8 that regulates innate/adaptive immunity and inflammation, in intestinal tumorigenesis, we crossed a Tpl2 KO allele into the Apc min/+ genetic background. Here, we show that Apc min/+ /Tpl2 −/− mice exhibit a fivefold increase in the number of intestinal adenomas. Bone marrow transplantation experiments revealed that the enhancement of polyposis was partially hematopoietic cell-driven. Consistent with this observation, Tpl2 ablation promoted intestinal inflammation. IL-10 levels and regulatory T-cell numbers were lower in the intestines of Tpl2 −/− mice, independent of Apc and polyp status, suggesting that they were responsible for the initiation of the enhancement of tumorigenesis caused by the ablation of Tpl2 . The low IL-10 levels correlated with defects in mTOR activation and Stat3 phosphorylation in Toll-like receptor-stimulated macrophages and with a defect in inducible regulatory T-cell generation and function. Both polyp numbers and inflammation increased progressively with time. The rate of increase of both, however, was more rapid in Apc min/+ /Tpl2 −/− mice, suggesting that the positive feedback initiated by inflammatory signals originating in developing polyps is more robust in these mice. This may be because these mice have a higher intestinal polyp burden as a result of the enhancement of tumor initiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.