Germ-free mice are used to examine questions about the role of the gut microbiota in development of diseases. Generally these animals are maintained in semi-rigid or flexible-film isolators to ensure their continued sterility or, if colonized with specific microbiota, to ensure that no new species are introduced. Here, we describe the use of a caging system in which individual cages are hermetically sealed and have their own filtered positive airflow. This isopositive caging system requires less space and reduces animal housing costs. By using strict sterile techniques, we kept mice germ-free in this caging system for 12 weeks. We also used this caging system and approach to conduct studies evaluating a) the stability of the microbiome in germ-free mice receiving a fecal transplant and b) the stability of dietary-induced microbiota changes in fecal-transplanted mice. As has been shown in fecal transfer studies in isolators, we found that the transferred microbiota stabilizes as early as 2 weeks post transfer although recipient microbiota did not completely recapitulate those of the donors. Interestingly, we also noted some sex effects in these studies indicating that the sex of recipients or donors may play a role in colonization of microbiota. However, a larger study will be needed to determine what role, if any, sex plays in colonization of microbiota. Based on our studies, an isopositive caging system may be utilized to test multiple donor samples for their effects on phenotypes of mice in both normal and disease states even with limited available space for housing.
The microbiome and pregnancy are known to alter drug disposition, yet the interplay of the two physiologic factors on the expression and/or activity of drug metabolizing enzymes and transporters (DMETs) is unknown. This study investigated the effects of microbiome on host hepatic DMETs in mice during pregnancy by comparing four groups of conventional (CV) and germ-free (GF) female mice and pregnancy status, namely, CV nonpregnant, GF non-pregnant, CV pregnant, and GF pregnant mice. Transcriptomic and targeted proteomics of hepatic DMETs were profiled by using multiomics. Plasma bile acid and steroid hormone levels were quantified by liquid chromatography tandem mass spectrometry. CYP3A activities were measured by mouse liver microsome incubations. The trend of pregnancy-induced changes in the expression or activity of hepatic DMETs in CV and GF mice was similar; however, the magnitude of change was noticeably different. For certain DMETs, pregnancy status had paradoxical effects on mRNA and protein expression in both CV and GF mice. For instance, the mRNA levels of Cyp3a11, the murine homolog of human CYP3A4, were decreased by 1.7-fold and 3.3-fold by pregnancy in CV and GF mice, respectively; however, the protein levels of CYP3A11 were increased similarly ∼twofold by pregnancy in both CV and GF mice. Microsome incubations revealed a marked induction of CYP3A activity by pregnancy that was 10-fold greater in CV mice than that in GF mice. This is the first study to show that the microbiome can alter the expression and/or activity of hepatic DMETs in pregnancy. SIGNIFICANCE STATEMENTWe demonstrated for the first time that microbiome and pregnancy can interplay to alter the expression and/or activity of hepatic drug metabolizing enzymes and transporters. Though the trend of pregnancy-induced changes in the expression or activity of hepatic drug metabolizing enzymes and transporters in conventional and germ-free mice was similar, the magnitude of change was noticeably different.
Many inflammatory bowel disease (IBD) patients require surgical intervention due to limited pharmacological treatment options. Antibodies targeting α4ß7, a gut-homing integrin, are one of the most promising IBD treatments. As retinoic acid (RA) regulates expression of gut-homing proteins including α4ß7 integrin, we tested if ALDH1A enzymes in the RA synthesis pathway could be targeted for IBD treatment using a potent inhibitor, WIN 18,446. Age- and sex-matched Smad3−/− mice were fed a diet with and without WIN 18,446 for 3 weeks before triggering inflammation with Helicobacter bilis infection. Colitis was evaluated by histopathology one week following the IBD trigger, and T cell subsets were evaluated before and after the IBD trigger. WIN 18,446 treatment significantly reduced IBD severity in Smad3−/− mice and reduced expression of α4ß7 integrin on multiple activated CD4+ T cell subsets. This change was associated with increased ratios of induced regulatory T cells to Th17 cells during the inflammatory response in the draining lymph nodes. These studies indicate that RA reduction via ALDH1A enzyme inhibition is a potential new target for IBD treatment. Further studies are needed to examine its effects on other types of immune cells, to evaluate the efficacy window for this target, and to determine its efficacy in other animal models of IBD.
While the association between microbiomes and inflammatory bowel disease (IBD) is well known, establishing causal relationships between the two is difficult in humans. Germ-free (GF) mice genetically susceptible to IBD can address this question. Smad3 -/mice with defective transforming growth factor ß signaling are a model of IBD and colon cancer. They develop IBD upon colonization with Helicobacter under specific pathogen-free conditions, suggesting a role of the microbiome in IBD in this model. Thus, we rederived Smad3 -/mice GF to determine the potential of using these mice for testing the causative role of microbiomes in IBD. We found that fecal microbiomes from mice with IBD cause more severe gut inflammation in GF Smad3 -/and wild type mice compared to microbiomes from healthy mice and that Helicobacter induces gut inflammation within the context of other microbiomes but not by itself. Unexpectedly, GF Smad3 +/+ and Smad3 +/mice given IBD microbiomes develop IBD despite their lack of disease in SPF conditions upon Helicobacter infection. This was not unique to the background strain of our Smad3 model ( 129); both wild type C57BL/6 and 129 strains developed IBD upon fecal transfer. However, wild type Swiss Webster stock was not susceptible, indicating that the genetic background of recipient mice influences the severity of IBD following fecal transfer. Our data suggest that the microbiome is an independent risk factor contributing to IBD development, and careful characterization of new GF models is needed to understand potential sources of confounding factors influencing microbiome studies in these mice.
At present, little is known about how gut microbiome and pregnancy interplay to regulate expression or the activities of drug processing genes (DPGs). The objective of this study was to investigate the effects of gut microbiome on host hepatic DPGs during pregnancy using conventional (CV) and germ‐free (GF) mice. Four groups of C57BL/6 female mice were used: CV non‐pregnant (CVNP, n=6), GF non‐pregnant (GFNP, n=6), CV pregnant (CVP, n=5), and GF pregnant (GFP, n=5) mice. Hepatic transcriptome and proteome for DPGs were profiled using multi‐omics approach. Plasma bile acids and steroid hormone levels were determined using LC‐MS/MS. Cyp activities were measured using hepatic microsome incubations. Overall, RNA‐seq analysis revealed a similar trend of gene regulation by pregnancy, but different magnitudes of change in hepatic DPGs, in CV and GF mice. Of note, the Cyp3a11 mRNA levels were decreased 1.7‐fold and 3.2‐fold by pregnancy in CV and GF mice, respectively. On the contrary, the Cyp3a11 protein abundance was increased 1.2‐fold and 1.6‐fold by pregnancy in CV and GF mice, respectively. The Cyp3a activity was also significantly induced by pregnancy in CV and GF mice; however, the magnitude of induction in CV mice was >5‐fold greater than that in GF mice. Plasma bile acid and steroid hormone levels were significantly impacted by microbiome and pregnancy‐status, respectively, which may contribute to the differential effects of pregnancy in CV and GF mice. This is the first study to demonstrate that the gut microbiome may play a role in altering hepatic drug disposition in pregnancy. Support or Funding Information This project was supported by the University of Washington Drug Metabolism, Transport and Pharmacogenomics Research Program (DMTPR)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.