Abstract. We consider the variant of a stochastic parabolic Ginzburg-Landau equation that allows for the formation of point defects of the solution. The noise in the equation is multiplicative of the gradient type. We show that the family of the Jacobians associated to the solution is tight on a suitable space of measures. Our main result is the characterization of the limit points of this family. They are concentrated on finite sums of delta measures with integer weights. The point defects of the solution coincide with the points at which the delta measures are centered.
We analyze the convergence rates to a planar interface in the Mullins-Sekerka model by applying a relaxation method based on relationships among distance, energy, and dissipation. The relaxation method was developed by two of the authors in the context of the 1-d Cahn-Hilliard equation and the current work represents an extension to a higher dimensional problem in which the curvature of the interface plays an important role. The convergence rates obtained are optimal given the assumptions on the initial data.
We examine a stochastic Landau-Lifshitz-Gilbert equation based on an exchange energy functional containing second-order derivatives of the unknown field. Such regularizations are featured in advanced micromagnetic models recently introduced in connection with nanoscale topological solitons. We show that, in contrast to the classical stochastic Landau-Lifshitz-Gilbert equation based on the Dirichlet energy alone, the regularized equation is solvable in the stochastically strong sense. As a consequence it preserves the topology of the initial data, almost surely.
We consider the mixed Ginzburg-Landau flow that is supplemented with convective derivatives of the unknown function. We show that the associated vortex motion law is the mixed flow of the renormalized energy with new nonlinear forcing terms. These terms are uniquely determined by the extra terms in the initial PDE. Our proof relies on the assumption that the initial data are close to optimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.