The basal transcription apparatus of archaea is well characterized. However, much less is known about the mechanisms of transcription termination and translation initation. Recently, experimental determination of the 5′-ends of ten transcripts from Pyrobaculum aerophilum revealed that these are devoid of a 5′-UTR. Bioinformatic analysis indicated that many transcripts of other archaeal species might also be leaderless. The 5′-ends and 3′-ends of 40 transcripts of two haloarchaeal species, Halobacterium salinarum and Haloferax volcanii, have been determined. They were used to characterize the lengths of 5′-UTRs and 3′-UTRs and to deduce consensus sequence-elements for transcription and translation. The experimental approach was complemented with a bioinformatics analysis of the H. salinarum genome sequence. Furthermore, the influence of selected 5′-UTRs and 3′-UTRs on transcript stability and translational efficiency in vivo was characterized using a newly established reporter gene system, gene fusions, and real-time PCR. Consensus sequences for basal promoter elements could be refined and a novel element was discovered. A consensus motif probably important for transcriptional termination was established. All 40 haloarchaeal transcripts analyzed had a 3′-UTR (average size 57 nt), and their 3′-ends were not posttranscriptionally modified. Experimental data and genome analyses revealed that the majority of haloarchaeal transcripts are leaderless, indicating that this is the predominant mode for translation initiation in haloarchaea. Surprisingly, the 5′-UTRs of most leadered transcripts did not contain a Shine-Dalgarno (SD) sequence. A genome analysis indicated that less than 10% of all genes are preceded by a SD sequence and even most proximal genes in operons lack a SD sequence. Seven different leadered transcripts devoid of a SD sequence were efficiently translated in vivo, including artificial 5′-UTRs of random sequences. Thus, an interaction of the 5′-UTRs of these leadered transcripts with the 16S rRNA could be excluded. Taken together, either a scanning mechanism similar to the mechanism of translation initiation operating in eukaryotes or a novel mechanism must operate on most leadered haloarchaeal transcripts.
SummaryFour different mechanisms for translation initiation are known, i.e. one prokaryotic mechanism involving a Shine-Dalgarno sequence, two eukaryotic mechanisms relying on ribosomal scanning or internal ribosomal entry sites, and one mechanism acting on leaderless transcripts. Recently it was reported that the majority of haloarchaeal transcripts is leaderless and that most leadered transcripts are devoid of a Shine-Dalgarno sequence, excluding the operation of a 'bacterial-like' initiation mechanism. Therefore, the current study concentrated on elucidating whether a 'eukaryotic-like' scanning mechanism might operate instead. GUG and UUG were efficiently used as start codons on leadered transcripts in vivo, in contrast to initiation on leaderless transcripts (and leadered eukaryotic transcripts). Deleted versions of the 5Ј-UTR initiated translation very inefficiently. Introduction of additional upstream AUGs did not influence the initiation efficiency at internal start codons. An additional in-frame AUG at the 5Ј-end led to the simultaneous usage of two start sites on the same message. A stable stem-loop structure at the 5Ј-end inhibited only initiation at the first AUG, but did not influence usage of the internal AUG. Taken together, operation of a scanning mechanism was excluded and the results indicate that a novel mechanism for translation initiation operates at least in haloarchaea.
The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional genomics, and molecular genetics of haloarchaea is summarized and selected examples are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.