We have adapted an in vitro digestion/Caco-2 cell model to assess Fe availability from foods, by using ferritin formation by Caco-2 cells as an indicator of Fe uptake. Ferritin formation by Caco-2 cells occurs in response to Fe uptake at concentrations of available Fe greater than that of the culture media to which the cells have been adapted. This methodology circumvents the need for using radioactive Fe and thus eliminates the costs and controversies associated with food radiolabeling. To validate this method, we measured ferritin formation in Caco-2 cells exposed to digests containing Fe of relatively high and low availability. Our objective was to determine if ferritin formation would be proportional to Fe uptake and sufficiently sensitive to be an indicator of Fe availability from food digests. Our model uses established in vitro digestion techniques coupled with uptake of Fe by Caco-2 cell monolayers. Measurement of cell ferritin was done by a commercially available RIA. Higher ferritin formation was observed in cells exposed to digests containing FeSO4 plus ascorbic acid vs, digests containing FeSO4 plus citric acid. Additional comparisons of Fe availability from digests of beef, fish, corn and green beans yielded results that demonstrate higher Fe availability (i.e., greater ferritin formation) from beef and fish digests than from digests of corn and green beans. Overall, the results document the promotional effects of ascorbic acid and animal tissue on Fe uptake as measured indirectly by ferritin formation. The results of this study indicate that ferritin formation by Caco-2 cell monolayers is highly sensitive and accurately measures food Fe availability in this in vitro system.
Effective responses to rapid environmental change rely on observations to inform planning and decision-making. Reviewing literature from 124 programs across the globe and analyzing survey data for 30 Arctic community-based monitoring programs, we compare top-down, large-scale program driven approaches with bottom-up approaches initiated and steered at the community level. Connecting these two approaches and linking to Indigenous and local knowledge yields benefits including improved information products and enhanced observing program efficiency and sustainability. We identify core principles central to such improved links: matching observing program aims, scales, and ability to act on information; matching observing program and community priorities; fostering compatibility in observing methodology and data management; respect of Indigenous intellectual property rights and the implementation of free, prior, and informed consent; creating sufficient organizational support structures; and ensuring sustained community members’ commitment. Interventions to overcome challenges in adhering to these principles are discussed.
In the Arctic region, sea ice retreat as a decadal-scale crisis is creating a challenging environment for navigating long-term sustainability. Innovations in sea ice services can help marine users to anticipate sea ice concentration, thickness and motion, plan ahead, as well as increase the safety and sustainability of marine operations. Increasingly however, policy makers and information service providers confront paradoxical decision-making contexts in which contradictory solutions are needed to manage uncertainties across different spatial and temporal scales. This article proposes a forward-looking sea ice services framework that acknowledges four paradoxes pressuring sea ice service provision: the paradoxes of performing, contradictory functions embedded in sea ice services, contradicting desired futures and the paradox of responsible innovation. We draw on the results from a multi-year co-production process of (sub)seasonal sea ice services structured around scoping interviews, workshops and a participatory scenario process with representatives of marine sectors, fishers, hunters, metservice providers, and policy experts. Our proposed framework identifies institutionalized coproduction processes, enhanced decision support, paradoxical thinking and dimensions of responsible innovation as tactics necessary to address existing tensions in sea ice services. We highlight the role of socio-economic scenarios in implementing these tactics in support of responsible innovation in sea ice social–ecological systems. The article concludes with a discussion of questions around equity and responsibility raised by the ultimate confirmation that enhanced information, data infrastructures, and service provisions will not benefit all actors equally.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.