Seventy-seven Bmcella reference and field strains from different geographic origins and hosts representing the six recognized species and their different biovars were analysed for diversity of their genes encoding the major 25 and 36 kDa outer-membrane proteins (OMPs) by PCR-RFLP. The 25 kDa OMP is encoded by a single gene (omp25) whereas two closely related genes (omp2a and omp2b) encode and potentially express the 36 kDa OMP. Analysis of PCR products of the omp25 gene digested with nine restriction enzymes revealed two species-specific markers, i.e. the absence of the EcoRV site in all Brucella melitensis strains and an N 50 bp deletion a t the 3' terminal end of the gene in all Brucella owis strains. Analysis of PCR products of the omp2a and omp2b genes digested with 13 restriction enzymes indicated a greater diversity than the omp25 gene among the six Bmcella species and within the Bmcella abortus, Brucella suis, B. melitensis and B. ovis species. Greater polymorphism was also detected for the omp2b than for the omp2a gene, especially in B. owis which seemed to carry two similar (but not identical) copies of omp2a instead of one copy each of omp2a and omp2b for the other Bmcella species as was previously suggested by Ficht et a/. (1990; Mo/ Microbiol4,1135-1142). Results of PCR-RFLP indicated that distinction can be made between Brucella species and some of their biovars, except between B. canis and B. suis bv. 3 and 4, on the basis of the size and diversity of their major OMP genes, and that it could be of importance for diagnostic, epidemiological and evolutionary study purposes.
The Salmonella enterica species includes about 2600 diverse serotypes, most of which cause a wide range of food‐ and water‐borne diseases ranging from self‐limiting gastroenteritis to typhoid fever in both humans and animals. Moreover, some serotypes are restricted to a few animal species, whereas other serotypes are able to infect plants as well as cold‐ and warm‐blooded animals. An essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of phagocytic and nonphagocytic cells. The aim of this review is to describe the different entry pathways used by Salmonella serotypes to enter different nonphagocytic cell types. Until recently, it was accepted that Salmonella invasion of eukaryotic cells required only the type III secretion system (T3SS) encoded by the Salmonella pathogenicity island‐1. However, recent evidence shows that Salmonella can cause infection in a T3SS‐1‐independent manner. Currently, two outer membrane proteins Rck and PagN have been clearly identified as Salmonella invasins. As Rck mediates a Zipper‐like entry mechanism, Salmonella is therefore the first bacterium shown to be able to induce both Zipper and Trigger mechanisms to invade host cells. In addition to these known entry pathways, recent data have shown that unknown entry routes could be used according to the serotype, the host and the cell type considered, inducing either Zipper‐like or Trigger‐like entry processes. The new paradigm presented here should change our classic view of Salmonella pathogenicity. It could also modify our understanding of the mechanisms leading to the different Salmonella‐induced diseases and to Salmonella‐host specificity.
The nucleotide sequence of the xynZ gene, encoding the extracellular xylanase Z of Clostridium thermocellum, was determined. The putative xynZ gene was 2,511 base pairs long and encoded a polypeptide of 837 amino acids. A region of 60 amino acids containing a duplicated segment of 24 amino acids was found between residues 429 and 488 of xylanase Z. This region was strongly similar to the conserved domain found at the carboxy-terminal ends of C. thermocellum endoglucanases A, B, and D. Deletions removing up to 508 codons from the 5' end of the gene did not affect the activity of the encoded polypeptide, showing that the active site was located in the C-terminal half of the protein and that the conserved region was not involved in catalysis. Expression of xylanase activity in Escherichia coli was increased up to 220-fold by fusing fragments containing the 3' end of the gene with the start of lacZ present in pUC19. An internal translational initiation site which was efficiently recognized in E. coli was tentatively identified 470 codons downstream from the actual start codon.
Several models have shown that virulence varies from one strain of Listeria monocytogenes to another, but little is known about the cause of low virulence. Twenty-six field L. monocytogenes strains were shown to be of low virulence in a plaque-forming assay and in a subcutaneous inoculation test in mice. Using the results of cell infection assays and phospholipase activities, the low-virulence strains were assigned to one of four groups by cluster analysis and then virulence-related genes were sequenced. Group I included 11 strains that did not enter cells and had no phospholipase activity. These strains exhibited a mutated PrfA; eight strains had a single amino acid substitution, PrfAK220T, and the other three had a truncated PrfA, PrfA⌬174-237. These genetic modifications could explain the low virulence of group I strains, since mutated PrfA proteins were inactive. Group II and III strains entered cells but did not form plaques. Group II strains had low phosphatidylcholine phospholipase C activity, whereas group III strains had low phosphatidylinositol phospholipase C activity. Several substitutions were observed for five out of six group III strains in the plcA gene and for one out of three group II strains in the plcB gene. Group IV strains poorly colonized spleens of mice and were practically indistinguishable from fully virulent strains on the basis of the above-mentioned in vitro criteria. These results demonstrate a relationship between the phenotypic classification and the genotypic modifications for at least group I and III strains and suggest a common evolution of these strains within a group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.