Fog computing extends mobile cloud computing facilities at the network edge, yielding low-latency application execution. To supplement cloud services, computationally intensive applications can be distributed on resource-constrained mobile devices by leveraging underutilized nearby resources to meet the latency and bandwidth requirements of application execution. Building upon this premise, it is necessary to investigate idle or underutilized resources that are present at the edge of the network. The utilization of a microservice architecture in IoT application development, with its increased granularity in service breakdown, provides opportunities for improved scalability, maintainability, and extensibility. In this research, the proposed schedule tackles the latency requirements of applications by identifying suitable upward migration of microservices within a multi-tiered fog computing infrastructure. This approach enables optimal utilization of network edge resources. Experimental validation is performed using the iFogSim2 simulator and the results are compared with existing baselines. The results demonstrate that compared to the edgewards approach, our proposed technique significantly improves the latency requirements of application execution, network usage, and energy consumption by 66.92%, 69.83%, and 4.16%, respectively.
The availability of location-aware devices generates tremendous volumes of moving object trajectories. The processing of these large-scale trajectories requires innovative techniques that are capable of adapting to changes in cloud systems to satisfy a wide range of applications and non-programmer end users. We introduce a Resilient Moving Object Index that is capable of balancing both spatial and object localities to maximize the overall performance in numerous environments. It is equipped with compulsory, discrete, and impact factor prediction models. The compulsory and discrete models are used to predict a locality pivot based on three fundamental aspects: computation resources, nature of the trajectories, and query types. The impact factor model is used to predict the influence of contrasting queries. Moreover, we provide a framework to extract efficient training sets and features without adding overhead to the index construction. We conduct an extensive experimental study to evaluate our approach. The evaluation includes two testbeds and covers spatial, temporal, spatio-temporal, continuous, aggregation, and retrieval queries. In most cases, the experiments show a significant performance improvement compared to various indexing schemes on a compact trajectory dataset as well as a sparse dataset. Most important, they demonstrate how our proposed index adapts to change in various environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.