Most people tend to bisect horizontal lines slightly to the left of their true center (pseudoneglect) and start visual search from left-sided items. This physiological leftward spatial bias may depend on hemispheric asymmetries in the organization of attentional networks, but the precise mechanisms are unknown. Here, we modeled relevant aspects of the ventral and dorsal attentional networks (VAN and DAN) of the human brain. First, we demonstrated pseudoneglect in visual search in 101 right-handed psychology students. Participants consistently tended to start the task from a left-sided item, thus showing pseudoneglect. Second, we trained populations of simulated neurorobots to perform a similar task, by using a genetic algorithm. The neurorobots’ behavior was controlled by artificial neural networks, which simulated the human VAN and DAN in the two brain hemispheres. Neurorobots differed in the connectional constraints that were applied to the anatomy and function of the attention networks. Results indicated that (1) neurorobots provided with a biologically plausible hemispheric asymmetry of the VAN-DAN connections, as well as with interhemispheric inhibition, displayed the best match with human data; however; (2) anatomical asymmetry per se was not sufficient to generate pseudoneglect; in addition, the VAN must have an excitatory influence on the ipsilateral DAN; and (3) neurorobots provided with bilateral competence in the VAN but without interhemispheric inhibition failed to display pseudoneglect. These findings provide a proof of concept of the causal link between connectional asymmetries and pseudoneglect and specify important biological constraints that result in physiological asymmetries of human behavior.
BackgroundThe measures taken to contain the coronavirus disease 2019 (COVID-19) pandemic, such as the lockdown in Italy, do impact psychological health; yet, less is known about their effect on cognitive functioning. The transactional theory of stress predicts reciprocal influences between perceived stress and cognitive performance. However, the effects of a period of stress due to social isolation on spatial cognition and exploration have been little examined. The aim of the present study was to investigate the possible effects and impact of the COVID-19 pandemic on spatial cognition tasks, particularly those concerning spatial exploration, and the physiological leftward bias known as pseudoneglect. A right-hemisphere asymmetry for spatial attention processes crucially contributes to pseudoneglect. Other evidence indicates a predominantly right-hemisphere activity in stressful situations. We also analyzed the effects of lockdown on coping strategies, which typically show an opposite pattern of hemispheric asymmetry, favoring the left hemisphere. If so, then pseudoneglect should increase during the lockdown and be negatively correlated with the efficacy of coping strategies.MethodsOne week before the start of the lockdown due to COVID-19 in Italy (T1), we had collected data from a battery of behavioral tests including tasks of peri-personal spatial cognition. During the quarantine period, from late April to early May 2020 (T2), we repeated the testing sessions with a subgroup of the same participants (47 right-handed students, mean age = 20, SD = 1.33). At both testing sessions, participants performed digitized neuropsychological tests, including a Cancellation task, Radial Arm Maze task, and Raven’s Advanced Progressive Matrices. Participants also completed a newly developed COVID-19 Student Stress Scale, based on transactional models of stress, and the Coping Orientation to Problems Experienced—New Italian Version (COPE-NIV) to assess coping orientation.ResultsThe tendency to start cancelation from a left-sided item, to explore first a left-sided arm of the maze, and to choose erroneous response items on the left side of the page on Raven’s matrices increased from T1 to T2. The degree of pseudoneglect increment positively correlated with perceived stress and negatively correlated with Positive Attitude and Problem-Solving COPE-NIV subscales.ConclusionLockdown-related stress may have contributed to increase leftward bias during quarantine through a greater activation of the right hemisphere. On the other hand, pseudoneglect was decreased for better coping participants, perhaps as a consequence of a more balanced hemispheric activity in these individuals.
The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual “sensations” based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual’s life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior to a genetically selected pattern in order to maximize the possible reward. We also prove the determinant presence of an internal time perception unit for the robots to achieve the highest performance and survivability across all conditions.
In this paper we describe how a population of evolving robots
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.