COVID-19 has appeared in china, spread rapidly the world wide and caused with many injuries, deaths between humans. It is possible to avoid the spread of the disease or reduce its spread with the machine learning and the diagnostic techniques, where the use classification algorithms are one of the fundamental issues for prediction and decision-making to help of the early detection, diagnose COVID-19 cases and identify dangerous cases that need admit Intensive Care Unit to provide treatment in a timely manner. In this paper, we use the machine learning algorithms to classify the COVID-19 cases, the dataset got from dataset search on google and used four algorithms, as (Logistic Regression, Naive Bayes, Random Forest, Stochastic Gradient Descent), the result of algorithms accuracy was 94.82%, 96.57%, 98.37%, 99.61% respectively and the execution time of each algorithm were 0.7s, 0.04s, 0.20s,0.02s respectively, and with the mislabeling Stochastic Gradient Descent algorithm was better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.