In Alzheimer's disease (AD), tau phosphorylation in the brain and its subsequent release into cerebrospinal fluid (CSF) and blood is a dynamic process that changes during disease evolution. The main aim of our study was to characterize the pattern of changes in phosphorylated tau (p-tau) in the preclinical stage of the Alzheimer's continuum. We measured three novel CSF p-tau biomarkers, phosphorylated at threonine-181 and threonine-217 with an Nterminal partner antibody and at threonine-231 with a mid-region partner antibody. These were compared with an automated midregion p-tau181 assay (Elecsys) as the gold standard p-tau measure. We demonstrate that these novel p-tau biomarkers increase more prominently in preclinical Alzheimer, when only subtle changes of amyloid-b (Ab) pathology are detected, and can accurately differentiate Ab-positive from Ab-negative cognitively unimpaired individuals. Moreover, we show that the novel plasma N-terminal p-tau181 biomarker is mildly but significantly increased in the preclinical stage. Our results support the idea that early changes in neuronal tau metabolism in preclinical Alzheimer, likely in response to Ab exposure, can be detected with these novel p-tau assays.
Introduction: The biological pathways involved in the preclinical stage of the Alzheimer's continuum are not well understood. Methods: We used NeuroToolKit and Elecsys ® immunoassays to measure cerebrospinal fluid (CSF) amyloid-β (Aβ)42, Aβ40, phosphorylated tau (p-tau), total tau (t-tau), neurofilament light (NfL), neurogranin, sTREM2, YKL40, GFAP, IL6, S100, and α-synuclein in cognitively unimpaired participants of the ALFA+ study, many within the Alzheimer's continuum. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
BackgroundThe Centiloid scale has been developed to standardize measurements of amyloid PET imaging. Reference cut-off values of this continuous measurement enable the consistent operationalization of decision-making for multicentre research studies and clinical trials. In this study, we aimed at deriving reference Centiloid thresholds that maximize the agreement against core Alzheimer’s disease (AD) cerebrospinal fluid (CSF) biomarkers in two large independent cohorts.MethodsA total of 516 participants of the ALFA+ Study (N = 205) and ADNI (N = 311) underwent amyloid PET imaging ([18F]flutemetamol and [18F]florbetapir, respectively) and core AD CSF biomarker determination using Elecsys® tests. Tracer uptake was quantified in Centiloid units (CL). Optimal Centiloid cut-offs were sought that maximize the agreement between PET and dichotomous determinations based on CSF levels of Aβ42, tTau, pTau, and their ratios, using pre-established reference cut-off values. To this end, a receiver operating characteristic analysis (ROC) was conducted, and Centiloid cut-offs were calculated as those that maximized the Youden’s J Index or the overall percentage agreement recorded.ResultsAll Centiloid cut-offs fell within the range of 25–35, except for CSF Aβ42 that rendered an optimal cut-off value of 12 CL. As expected, the agreement of tau/Aβ42 ratios was higher than that of CSF Aβ42. Centiloid cut-off robustness was confirmed even when established in an independent cohort and against variations of CSF cut-offs.ConclusionsA cut-off of 12 CL matches previously reported values derived against postmortem measures of AD neuropathology. Together with these previous findings, our results flag two relevant inflection points that would serve as boundary of different stages of amyloid pathology: one around 12 CL that marks the transition from the absence of pathology to subtle pathology and another one around 30 CL indicating the presence of established pathology. The derivation of robust and generalizable cut-offs for core AD biomarkers requires cohorts with adequate representation of intermediate levels.Trial registrationALFA+ Study, NCT02485730ALFA PET Sub-study, NCT02685969Electronic supplementary materialThe online version of this article (10.1186/s13195-019-0478-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.