The situation in Europe concerning honeybees has in recent years become increasingly aggravated with steady decline in populations and/or catastrophic winter losses. This has largely been attributed to the occurrence of a variety of known and “unknown”, emerging novel diseases. Previous studies have demonstrated that colonies often can harbour more than one pathogen, making identification of etiological agents with classical methods difficult. By employing an unbiased metagenomic approach, which allows the detection of both unexpected and previously unknown infectious agents, the detection of three viruses, Aphid Lethal Paralysis Virus (ALPV), Israel Acute Paralysis Virus (IAPV), and Lake Sinai Virus (LSV), in honeybees from Spain is reported in this article. The existence of a subgroup of ALPV with the ability to infect bees was only recently reported and this is the first identification of such a strain in Europe. Similarly, LSV appear to be a still unclassified group of viruses with unclear impact on colony health and these viruses have not previously been identified outside of the United States. Furthermore, our study also reveals that these bees carried a plant virus, Turnip Ringspot Virus (TuRSV), potentially serving as important vector organisms. Taken together, these results demonstrate the new possibilities opened up by high-throughput sequencing and metagenomic analysis to study emerging new diseases in domestic and wild animal populations, including honeybees.
Compared to routine diagnostics, screening for pathogens in outbreak situations, with or without intentional release, poses demands on the detection technology to not only indicate the presence of already known causative agents but also novel and unexpected pathogens. The metagenomic approach to detecting viral pathogens, using unbiased high-throughput sequencing (HTS), is a well-established methodology with a broad detection range and wide applicability on different sample matrices. To prepare a sample for HTS, the common presequencing steps include homogenization, enrichment, separation (eg, magnetic separation), and amplification. In this initial study, we explored the benefits and drawbacks of preprocessing by sequence-independent, single-primer amplification (SISPA) of nucleic acids by applying the methodology to artificial samples. More specifically, a synthetic metagenome was divided into 2 samples, 1 unamplified and 1 diluted, and amplified by SISPA. Subsequently, both samples were sequenced using the Ion Torrent Personal Genome Machine (PGM), and the resulting datasets were analyzed by using bioinformatics, short read mapping, de novo assembly, BLAST-based taxonomic classification, and visualization. The results indicate that even though SISPA introduces a strong amplification bias, which makes it unsuitable for whole-genome sequencing, it is still useful for detecting and identifying viruses.
Neonatal porcine diarrhoea of uncertain aetiology has been reported from a number of European countries. The aim of the present study was to use viral metagenomics to examine a potential viral involvement in this diarrhoea and to describe the intestinal virome with focus on eukaryotic viruses. Samples from the distal jejunum of 50 diarrhoeic and 19 healthy piglets from 10 affected herds were analysed. The viral fraction of the samples was isolated and nucleic acids (RNA and DNA fractions) were subjected to sequence independent amplification. Samples from diarrhoeic piglets from the same herds were pooled whereas samples from healthy piglets were analysed individually. In total, 29 clinical samples, plus two negative controls and one positive control consisting of a mock metagenome were sequenced using the Ion Torrent platform. The resulting sequence data was subjected to taxonomic classification using Kraken, Diamond and HMMER. In the healthy specimens, eight different mammalian virus families were detected (Adenoviridae, Anelloviridae, Astroviridae, Caliciviridae, Circoviridae, Parvoviridae, Picornaviridae, and Reoviridae) compared to four in the pooled diarrhoeic samples (Anelloviridae, Circoviridae, Picornaviridae, and Reoviridae). It was not possible to associate a particular virus family with the investigated diarrhoea. In conclusion, this study does not support the hypothesis that the investigated diarrhoea was caused by known mammalian viruses. The results do, however, indicate that known mammalian viruses were present in the intestine as early as 24–48 hours after birth, indicating immediate infection post-partum or possibly transplacental infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.