Ischemia-reperfusion (I/R) damage is known to be a pathological process which continues with the increase of oxidants and expands with the inflammatory response. There is not any study about protective effect of etoricoxib on the liver I/R damage in literature. Objective. This study investigates the effect of etoricoxib on oxidative stress induced by I/R of the rat liver. Material and Methods. Experimental animals were divided into four groups as liver I/R control (LIRC), 50 mg/kg etoricoxib + liver I/R (ETO-50), 100 mg/kg etoricoxib + liver I/R (ETO-100), and healthy group (HG). ETO-50 and ETO-100 groups were administered etoricoxib, while LIRC and HG groups were orally given distilled water by gavage. Hepatic artery was clamped for one hour to provide ischemia, and then reperfusion was provided for 6 hours. Oxidant, antioxidant, and COX-2 gene expressions were studied in the liver tissues. ALT and AST were measured. Results. Etoricoxib in 50 and 100 mg/kg doses changed the levels of oxidant/antioxidant parameters such as MDA, MPO, tGSH, GSHRd, GST, SOD, NO, and 8-OH/Gua in favour of antioxidants. Furthermore, etoricoxib prevented increase of COX-2 gene expression and ALT and AST levels. This important protective effect of etoricoxib on the rat liver I/R can be tested in the clinical setting.
ABSTRACT-The effects of N-nitro-L-arginine-methyl ester (L-NAME) a nitric oxide (NO) synthase inhibitor and L-arginine, a NO precursor, were investigated on lidocaine-induced convulsions. In the first experiment, four groups of mice received physiological saline (0.9%), L-arginine (300 mg/ kg, i.p.), L-NAME (100 mg / kg, i.p.) and diazepam (2 mg/ kg), respectively. Thirty minutes after these injections, all mice received lidocaine (50 mg/kg, i.p.). In the second experiment, four groups of mice received similar treatment in the first experiment, and 30 min after these injections, all mice received a higher dose of lidocaine (80 mg/ kg). L-NAME (100 mg/kg, i.p.) and diazepam (2 mg/kg) significantly decreased the incidence of lidocaine (50 mg/kg)-induced convulsions. In contrast, the L-arginine treatment increased the incidence of lidocaine (80 mg/ kg, i.p.)-induced convulsions significantly. These results may suggest that NO is a proconvulsant mediator in lidocaine-induced convulsions.
To investigate the effect of HRE (Hippophae rhamnoides extract) on oral mucositis induced in rats with MTX. Material and Methods: Experimental animals were divided into groups as healthy (HG), HRE+MTX (HMTX), and control group, which received MTX (MTXC). HMTX group received 50 mg/kg HRE while MTXC and HG groups received equivolume distilled water with gavage once a day. After one hour of HRE and distilled water administration, HMTX and MTXC groups received a single dose of oral MTX 5 mg/ TNFanimals receiving MTX, compared with HG and HMTX groups; however, these parameters were lower in the cheek and low lip tissue, and a milder damage ocurred in these tissues, compared with the tongue tissue in MTXC group. No histopathologic damage was observed in the cheek, lower lip, and tongue tissues of the rats treated with HRE. Conclusion: This synthetic drugs for prophylaxis of oral mucositis developed due to MTX.
Purpose:Information is lacking on the protective effects of thiamine pyrophosphate (TPP) against hyperglycemia-induced retinopathy in rats. This study investigated the biochemical and histopathological aspects of the effect of TPP on hyperglycemia-induced retinopathy induced by alloxan in rats.Materials and Methods:The rats were separated into a diabetic TPP-administered group (DTPG), a diabetes control group (DCG) and a healthy group (HG). While the DTPG was given TPP, the DCG and HG were administered distilled water as a solvent at the same concentrations. This procedure was repeated daily for 3 months. At the end of this period, all of the rats were euthanized under thiopental sodium anesthesia, and biochemical and histopathological analyses of the ocular retinal tissues were performed. The results of the DTPG were compared with those of the DCG and HG.Results:TPP prevented hyperglycemia by increasing the amount of malondialdehyde and decreasing endogen antioxidants, including total glutathione, glutathione reductase, glutathione S-transferase and superoxide dismutase. In addition, the amounts of the DNA oxidation product 8-hydroxyguanine were significantly lower in the retinas of the DTPG compared to the DCG. In the retinas of the DCG, there was a marked increase in vascular structures and congestion, in addition to edema. In contrast, little vascularization and edema were observed in the DTPG, and there was no congestion. The results suggest that TPP significantly reduced the degree of hyperglycemia-induced retinopathy.Conclusions:The results of this study indicate that TPP may be useful for prophylaxis against diabetic retinopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.