Genetic Algorithms are most directly suited to unconstrained optimization. Application of Genetic Algorithms to constrained optimization problems is often a challenging effort. Several methods have been proposed for handling constraints. The most common method in Genetic Algorithms to handle constraints is to use penalty functions. In this paper, we present these penalty-based methods and discuss their strengths and weaknesses.
Constrained nonlinear programming problems often arise in many engineering applications. The most well-known optimization methods for solving these problems are sequential quadratic programming methods and generalized reduced gradient methods. This study compares the performance of these methods with the genetic algorithms which gained popularity in recent years due to advantages in speed and robustness. We present a comparative study that is performed on fifteen test problems selected from the literature.
Multiobjective optimization entails minimizing or maximizing multiple objective functions subject to a set of constraints. Many real world applications can be formulated as multi-objective optimization problems (MOPs), which often involve multiple conflicting objectives to be optimized simultaneously. Recently, a number of multi-objective evolutionary algorithms (MOEAs) were developed suggested for these MOPs as they do not require problem specific information. They find a set of non-dominated solutions in a single run. The evolutionary process on which they are based, typically relies on a single genetic operator. Here, we suggest an algorithm which uses a basket of search operators. This is because it is never easy to choose the most suitable operator for a given problem. The novel hybrid non-dominated sorting genetic algorithm (HNSGA) introduced here in this paper and tested on the ZDT (Zitzler-Deb-Thiele) and CEC'09 (2009 IEEE Conference on Evolutionary Computations) benchmark problems specifically formulated for MOEAs. Numerical results prove that the proposed algorithm is competitive with state-of-the-art MOEAs.
Classification of brain hemorrhage computed tomography (CT) images provides a better diagnostic implementation for emergency patients. Attentively, each brain CT image must be examined by doctors. This situation is time-consuming, exhausting, and sometimes leads to making errors. Hence, we aim to find the best algorithm owing to a requirement for automatic classification of CT images to detect brain hemorrhage. In this study, we developed OzNet hybrid algorithm, which is a novel convolution neural networks (CNN) algorithm. Although OzNet achieves high classification performance, we combine it with Neighborhood Component Analysis (NCA) and many classifiers: Artificial neural networks (ANN), Adaboost, Bagging, Decision Tree, K-Nearest Neighbor (K-NN), Linear Discriminant Analysis (LDA), Naïve Bayes and Support Vector Machines (SVM). In addition, Oznet is utilized for feature extraction, where 4096 features are extracted from the fully connected layer. These features are reduced to have significant and informative features with minimum loss by NCA. Eventually, we use these classifiers to classify these significant features. Finally, experimental results display that OzNet-NCA-ANN excellent classifier model and achieves 100% accuracy with created Dataset 2 from Brain Hemorrhage CT images.
Abstract-In this study, we focus on Artificial Neural Networks which are popularly used as universal non-linear inference models and Logistic Regression, which is a well known classification method in the field of statistical learning; there are many classification algorithms in the literature, though. We briefly introduce the techniques and discuss the advantages and disadvantages of these two methods through an application with real-world data set related with direct marketing campaigns of a Portuguese banking institution. The classification goal is to predict if the client will subscribe a term deposit or not after campaigns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.