Chemokines have been convincingly implicated in driving leukocyte emigration in different inflammatory reactions. However, the cellular and molecular mechanisms of chemokine involvement in leukocyte emigration are not clear. We and others suggested that leukocyte adhesion to the endothelium and transmigration are induced by chemokines immobilized on the endothelial cell surface. This would require the presence of specific chemokine binding sites in this microanatomical location. Using an in situ binding assay we demonstrated the presence of binding sites for interleukin-8 (IL-8) and RANTES, but not monocyte inflammatory protein-1 alpha on the endothelium of postcapillary venules and small veins in human skin. In contrast, venules and veins in various anatomical locations showed dramatically differing IL-8 binding patterns. The subcellular distribution of IL-8 in the venular endothelial cells following its in vivo and ex vivo injections was studied by use of electron microscopy. Our results suggest that IL-8 was internalized by the endothelial cells, transported transcellularly via plasmalemmal vesicles, and released onto the luminal surface where it appeared located preferentially on tips of membrane protrusions. We were unable to study the endothelial IL-8 binding or transport in vitro because all the in vitro propagated endothelial cell lines and primary endothelial cells tested lacked IL-8 binding sites. This includes human umbilical vein endothelial cells (HUVECs), which also did not bind IL-8 in situ. However, HUVECs provided a satisfactory in vitro system to study the secretion of IL-8 by the endothelial cells. Two possible alternative pathways were described: secretion directly from the Golgi apparatus or following storage in Weibel-Palade bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.