M alnutrition is the most chronic and pressing agricultural and human health problem of the 21st century. Undernutrition, micronutrient malnutrition, and unbalanced overnutrition with excessive consumption of carbohydrates and fats aff ect at least one third of the world's population in a negative manner and impinge on both longevity and the quality of life with good health. Yet in diff erent regions of the world, in developing and developed countries alike, a similar change in diet is occurring: Relearning ABSTRACTDiversifying diets and agricultural enterprises with fruit and vegetables is a potent weapon in the current global battle against malnutrition and poverty. Agricultural science can contribute substantially to enhance the development prospects and health of not only disadvantaged and vulnerable individuals at one end of the spectrum but also the growth and equity of national economies at the other. Moreover, with relatively simple applied research, new crop species and technologies can rapidly enter the development pathway to benefi t even the poorest people or nations. More upstream research can help to guard fruit and vegetable production against the vagaries of potential climatic uncertainty, which is projected to become more prominent over future decades. However, historical and continuing widespread underinvestment in fruit and vegetable research and development from the national to the global level may severely compromise the world's ability to use such highvalue species for crop diversifi cation and as a major engine of development growth to ensure global food and nutritional security.
A subset of the Solanum pimpinellifolium collection maintained by AVRDC-The World Vegetable Center, Taiwan was evaluated to assess effects of salt stress on physiological traits and yield-related traits with the aim of identifying potential S. pimpi nellifolium accessions useful for salt tolerance breed ing in tomato. We undertook a comparative analysis of yield and plant survival traits under normal and salt stress conditions to obtain a first indication of the crucial traits associated with salt tolerance in S. pimpinellifolium. Although most traits of S. pimpinellifolium accessions showed a similar percent decrease in mean under salt stress compared with the cultivated checks, the former exhibited a wide range for all traits, suggesting great genetic diversity that can be exploited for the identification of salt tolerant genotypes. Genetic variability for yield and survival traits under salt stress was quantitative with low to moderate heritability. Results of correlation and path coefficient analysis revealed no correlation between any of the physiological traits with yield-related traits indicating that the ability to survive and yield under salt stress are two independent sets of traits in S. pimpinellifolium. Results of the path analysis along with heritability and genetic advance showed that shoot dry weight and K/Na ratio are the two most critical component traits for survival, while fruit number is critical for yield per plant. The large S. pimpinellifolium panel evaluated in this study revealed five genotypes possessing better survival traits, seven genotypes with good yield traits, and two genotypes combining both superior survival and yield traits under salt stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.