Stable, OH free zinc oxide (ZnO) nanoparticles were synthesized by hydrothermal method by varying the growth temperature and concentration of the precursors. The formation of ZnO nanoparticles were confirmed by x-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) studies. The average particle size have been found to be about 7-24 nm and the compositional analysis is done with inductively coupled plasma atomic emission spectroscopy (ICP-AES). Diffuse reflectance spectroscopy (DRS) results shows that the band gap of ZnO nanoparticles is blue shifted with decrease in particle size. Photoluminescence properties of ZnO nanoparticles at room temperature were studied and the green photoluminescent emission from ZnO nanoparticles can originate from the oxygen vacancy or ZnO interstitial related defects.
A diyne functionalized 4,6-O-benzylidene β-d-galactopyranoside gelator, which can align its diyne motifs upon self-assembly (gelation) have been synthesized. The organogel formed by this gelator undergoes topochemical polymerization to polydiacetylene (PDA) under photoirradiation. This strategically designed gelator has been used to make semi-conducting fabrics. By developing the organogel on the fabrics, the gelator molecules were made not only to self-assemble on the fibers, but also to adhere to fabrics through hydrogen bonding. UV irradiation of the gel-coated fabric/fiber resulted in the formation of PDA on fibers. The benzylidene motif could be deprotected to get PDA with pendant free sugars that strongly bind to the cotton fibrils through multiple hydrogen bonds. Conductivity measurements revealed the semiconducting nature of these fabrics.
Nanoparticles of
ZnnormalGa2normalO4
and Eu-doped
ZnnormalGa2normalO4
were hydrothermally synthesized varying the process parameters, such as the volume ratio of the cation precursor solutions, temperature and time of growth, and dopant concentration. The nanoparticles were structurally characterized by X-ray diffraction, high-resolution transmission electron microscopy, and selected-area electron diffraction. The studies confirmed the formation of spherically shaped
ZnnormalGa2normalO4
nanoparticles with the standard spinel structure. Photoluminescence (PL) studies show that Eu-doped
ZnnormalGa2normalO4
nanoparticles exhibits a sharp red luminescence due to the intra-4f transitions of
Eu3+
ions at an excitation of
397nm
. Luminescence quenching is observed in the nanoparticles at higher Eu concentration. The room-temperature PL measurements of pure
ZnnormalGa2normalO4
nanocrystals monitored at an excitation wavelength of
254nm
gave a peak-shaped spectrum instead of the normally observed bell-shaped spectrum of bulk
ZnnormalGa2normalO4
. The bandgap of the
ZnnormalGa2normalO4
nanoparticles is blueshifted compared to the bulk material due to quantum confinement effects. Incorporation of Eu in the nanoparticles was confirmed by inductively coupled plasma atomic emission spectroscopic studies.
Eu-doped ZnO nanoparticles were synthesized by hydrothermal method. The Eu-dopant concentration has been varied by varying the amount of Eu-dopant concentration. These nanoparticles were structurally characterized by X-ray diffraction, transmission electron microscopy and selected area electron diffraction and it confirms the formation of nanoparticles having standard wurtzite structure. Photoluminescence studies show that these nanoparticles exhibit a sharp red luminescence due to the intra-4 f transitions of Eu 3+ ions at an excitation of 397 nm and 466 nm. Luminescence quenching is observed in the nanoparticles as the Eu-dopant concentration increases. Incorporation of Eu in the nanoparticles was confirmed by the energy dispersive X-ray studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.