Aluminium matrix composites (AMCs) are broadly used to change the monolithic materials in aviation, automotive, and defense industries owing to their superior characteristics such as specific strength with light weight, greater hardness, good wear resistance, and better thermal properties. This novel work was aimed at estimating the specific wear rate (SWR) of zirconium dioxide- (ZrO2-) filled AA8011 (Al-Fe-Si alloy) matrix composites. A Taguchi method and response surface methodology (RSM) were used to find out the optimum range of control parameters on SWR of proposed composites. The stir casting technique was used to fabricate the composite specimens with varying proportions (5, 10, and 15 wt.%) of ZrO2 particle addition. The wear tests were performed as per L27 orthogonal design by using a pin-on-disk apparatus under dry conditions. For this test, four control parameters such as wt.% of ZrO2, load, disc velocity, and sliding distance each at three levels were selected. Based on the experimental results, 15 wt.% of ZrO2, 29.43 N of load, 0.94 m/s of disc velocity, and 1000 m of sliding distance provide the minimum SWR of the developed composite sample. ANOVA result revealed that the load (49.04%) was the primary dominant factor for affecting the SWR, followed by wt.% of ZrO2 content (29.24%), respectively. Moreover, scanning electron microscopy (SEM) analysis was performed to study the wear mechanism of worn-out surface of the composite test specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.