Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is ''at rest.'' In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically ''active'' even when at ''rest.'' brain connectivity ͉ BrainMap ͉ FMRI ͉ functional connectivity ͉ resting-state networks
An increasingly large number of neuroimaging studies have investigated functionally connected networks during rest, providing insight into human brain architecture. Assessment of the functional qualities of resting state networks has been limited by the task-independent state, which results in an inability to relate these networks to specific mental functions. However, it was recently demonstrated that similar brain networks can be extracted from resting state data and data extracted from thousands of task-based neuroimaging experiments archived in the BrainMap database. Here, we present a full functional explication of these intrinsic connectivity networks at a standard low order decomposition using a neuroinformatics approach based on the BrainMap behavioral taxonomy as well as a stratified, data-driven ordering of cognitive processes. Our results serve as a resource for functional interpretations of brain networks in resting state studies and future investigations into mental operations and the tasks that drive them.
Activation likelihood estimation (ALE) has greatly advanced voxel-based meta-analysis research in the field of functional neuroimaging. We present two improvements to the ALE method. First, we evaluate the feasibility of two techniques for correcting for multiple comparisons: the single threshold test and a procedure that controls the false discovery rate (FDR). To test these techniques, foci from four different topics within the literature were analyzed: overt speech in stuttering subjects, the color-word Stroop task, picture-naming tasks, and painful stimulation. In addition, the performance of each thresholding method was tested on randomly generated foci. We found that the FDR method more effectively controls the rate of false positives in meta-analyses of small or large numbers of foci. Second, we propose a technique for making statistical comparisons of ALE meta-analyses and investigate its efficacy on different groups of foci divided by task or response type and random groups of similarly obtained foci. We then give an example of how comparisons of this sort may lead to advanced designs in future meta-analytic research.
With the ever-increasing number of studies in human functional brain mapping, an abundance of data has been generated that is ready to be synthesized and modeled on a large scale. The BrainMap database archives peak coordinates from published neuroimaging studies, along with the corresponding metadata that summarize the experimental design. BrainMap was designed to facilitate quantitative meta-analysis of neuroimaging results reported in the literature and supports the use of the activation likelihood estimation (ALE) method. In this paper, we present a discussion of the potential analyses that are possible using the BrainMap database and coordinate-based ALE meta-analyses, along with some examples of how these tools can be applied to create a probabilistic atlas and ontological system of describing function–structure correspondences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.