The ALESS survey has followed-up a sample of 122 sub-millimeter sources in the Extended Chandra Deep Field South at 870µm with ALMA, allowing to pinpoint the positions of sub-millimeter galaxies (SMGs) to ∼ 0.3 arcsec and to find their precise counterparts at different wavelengths. This enabled the first compilation of the multi-wavelength spectral energy distributions (SEDs) of a statistically reliable survey of SMGs. In this paper, we present a new calibration of the MAGPHYS SED modelling code that is optimized to fit these ultraviolet-to-radio SEDs of z > 1 star-forming galaxies using an energy balance technique to connect the emission from stellar populations, dust attenuation and dust emission in a physically consistent way. We derive statistically and physically robust estimates of the photometric redshifts and physical parameters (such as stellar masses, dust attenuation, star formation rates, dust masses) for the ALESS SMGs. We find that the ALESS SMGs have a median stellar mass M * = (8.9 ± 0.1) × 10 10 M ⊙ , median star formation rate SFR = 280 ± 70 M ⊙ yr −1 , median overall V -band dust attenuation A V = 1.9 ± 0.2 mag, median dust mass M dust = (5.6 ± 1.0) × 10 8 M ⊙ , and median average dust temperature T dust ≃ 40 K. We find that the average intrinsic spectral energy distribution of the ALESS SMGs resembles that of local ultra-luminous infrared galaxies in the infrared range, but the stellar emission of our average SMG is brighter and bluer, indicating lower dust attenuation, possibly because they are more extended. We explore how the average SEDs vary with different parameters (redshift, sub-millimeter flux, dust attenuation and total infrared luminosity), and we provide a new set of SMG templates that can be used to interpret other SMG observations. To put the ALESS SMGs into context, we compare their stellar masses and star formation rates with those of less actively star-forming galaxies at the same redshifts. We find that, at z ≃ 2, about half of the SMGs lie above the star-forming main sequence (with star formation rates three times larger than normal galaxies of the same stellar mass), while half are consistent with being at the high-mass end of the main sequence. At higher redshifts (z ≃ 3.5), the SMGs tend to have higher star formation rates and stellar masses, but the fraction of SMGs that lie significantly above the main sequence decreases to less than a third.
We analyse the physical properties of a large, homogeneously selected sample of ALMA-located sub-millimetre galaxies (SMGs) detected in the SCUBA-2 Cosmology Legacy Survey 850-µm map of the UKIDSS/UDS field. This survey, AS2UDS, identified 707 SMGs across the ∼ 1 deg 2 field, including ∼17 per cent which are undetected in the optical/near-infrared to K 25.7 mag. We interpret the UV-to-radio data of these systems using a physically motivated model, magphys and determine a median photometric redshift of z = 2.61±0.08, with a 68 th percentile range of z = 1.8-3.4, with just ∼ 6 per cent at z > 4. The redshift distribution is well fit by a model combining evolution of the gas fraction in halos with the growth of halo mass past a critical threshold of ∼4×10 12 M , thus SMGs may represent the highly efficient collapse of gasrich massive halos. Our survey provides a sample of the most massive, dusty galaxies at z 1, with median dust and stellar masses of M d = (6.8±0.3) × 10 8 M (thus, gas masses of ∼ 10 11 M ) and M * = (1.26±0.05) × 10 11 M . These galaxies have gas fractions of f gas = 0.41±0.02 with depletion timescales of ∼ 150 Myr. The gas mass function evolution of our sample at high masses is consistent with constraints at lower masses from blind CO-surveys, with an increase to z ∼ 2-3 and then a decline at higher redshifts. The space density and masses of SMGs suggests that almost all galaxies with M * 2 × 10 11 M have passed through an SMG-like phase. We find no evolution in dust temperature at a constant far-infrared luminosity across z ∼ 1.5-4. We exploit dust continuum sizes to show that SMGs appear to behave as simple homologous systems in the far-infrared, having properties consistent with a centrally illuminated starburst. Our study provides strong support for an evolutionary link between the active, gas-rich SMG population at z > 1 and the formation of massive, bulge-dominated galaxies across the history of the Universe.
We present a sensitive 870 μm survey of the Extended Chandra Deep Field South (ECDFS) combining 310 hr of observing time with the Large Apex BOlometer Camera (LABOCA) on the APEX telescope. The LABOCA ECDFS Submillimetre Survey (LESS) covers the full 30 × 30 field size of the ECDFS and has a uniform noise level of σ 870 μm ≈ 1.2 mJy beam −1. LESS is thus the largest contiguous deep submillimeter survey undertaken to date. The noise properties of our map show clear evidence that we are beginning to be affected by confusion noise. We present a catalog of 126 submillimeter galaxies (SMGs) detected with a significance level above 3.7σ , at which level we expect five false detections given our map area of 1260 arcmin 2. The ECDFS exhibits a deficit of bright SMGs relative to previously studied blank fields but not of normal star-forming galaxies that dominate the extragalactic background light (EBL). This is in line with the underdensities observed for optically defined high redshift source populations in the ECDFS (BzKs, DRGs, optically bright active galactic nucleus, and massive K-band-selected galaxies). The differential source counts in the full field are well described by a power law with a slope of α = −3.2, comparable to the results from other fields. We show that the shape of the source counts is not uniform across the field. Instead, it steepens in regions with low SMG density. Towards the highest overdensities we measure a source-count shape consistent with previous surveys. The integrated 870 μm flux densities of our source-count models down to S 870 μm = 0.5 mJy account for >65% of the estimated EBL from COBE measurements. We have investigated the clustering of SMGs in the ECDFS by means of a two-point correlation function and find evidence for strong clustering on angular scales <1 with a significance of 3.4σ. Assuming a power-law dependence for the correlation function and a typical redshift distribution for the SMGs we derive a characteristic angular clustering scale of θ 0 = 14 ± 7 and a spatial correlation length of r 0 = 13 ± 6 h −1 Mpc.
We present the first photometric redshift distribution for a large sample of 870 µm SMGs with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the ECDFS, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z phot = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z phot = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35 ± 5 per cent of the total population. We derive a median stellar mass of M ⋆ = (8 ± 1) × 10 10 M ⊙ , although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼ 100 Myr we show that their descendants at z ∼ 0 would have a space density and M H distribution which are in good agreement with those of local ellipticals. In addition the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events which form most of the stars seen in the majority of luminous elliptical galaxies at the present day.
Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.